【題目】已知橢圓 的離心率為,左、右焦點分別是,以為圓心、3為半徑的圓與以為圓心、1為半徑的圓相交,交點在橢圓C上.
(1)求橢圓C的方程;
(2)直線與橢圓C交于A,B兩點,點M是橢圓C的右頂點直線AM與直線BM分別與y軸交于點PQ,試問以線段PQ為直徑的圓是否過x軸上的定點?若是,求出定點坐標;若不是,說明理由.
【答案】(1); (2).
【解析】
(1)由題意可得,又離心率 ,可求,即可求出橢圓的標準方程(2)聯(lián)立直線與橢圓方程,消元得一元二次方程,求出,寫出點的坐標,
以線段PQ為直徑的圓過x軸上的定點 ,則等價于恒成立,利用向量運算即可求出.
(1)由題意知,則.又,可得,
橢圓的方程為。
(2)以線段PQ為直徑的圓過x軸上的定點.
由 得.
設 ,則有
又點M是橢圓C的右頂點,所以點 .
由題意可知直線AM的方程為,故點 .
直線BM的方程為,故點.
若以線段PQ為直徑的圓過x軸上的定點 ,則等價于恒成立.
又因為,
恒成立.
又因為 ,
所以 .解得.
故以線段PQ為直徑的圓過x軸上的定點。
科目:高中數(shù)學 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個偶數(shù)2,4,6;再染6后面最鄰近的5個連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個連續(xù)奇數(shù)29,31,…,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,……,則在這個紅色子數(shù)列中,由1開始的第2019個數(shù)是( )
A. 3972 B. 3974 C. 3991 D. 3993
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在坐標軸上,且經(jīng)過,.
(Ⅰ)求橢圓的標準方程和離心率;
(Ⅱ)四邊形的四個頂點都在橢圓上,且對角線,過原點,若,求證:四邊形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校,,的相關人員中,抽取若干人組成研究小組,有關數(shù)據(jù)見下表(單位:人).
高校 | 相關人員 | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(1)求,;
(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列結論中,正確的是( )
A.命題“”的否定是“”
B.若命題“”為真命題,則命題“”為真命題
C.命題“若,則”的否命題是“若,則”
D.“”是“命題‘’為真命題”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校自主招生一次面試成績的莖葉圖和頻率分布直方圖均收到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:
(1)求參加此次高校自主招生面試的總人數(shù)、面試成績的中位數(shù)及分數(shù)在內(nèi)的人數(shù);
(2)若從面試成績在內(nèi)的學生中任選三人進行隨機復查,求恰好有二人分數(shù)在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)滿足以下三個條件:①對于任意的,都有;②對于任意的都有③函數(shù)的圖象關于y軸對稱,則下列結論中正確的是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com