【題目】已知直線為公海與領(lǐng)海的分界線,一艘巡邏艇在原點(diǎn)處發(fā)現(xiàn)了北偏東 海面上處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.

1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點(diǎn)的軌跡;

2)若與公海的最近距離20海里,要保證在領(lǐng)海內(nèi)捕獲走私船,則,之間的最遠(yuǎn)距離是多少海里?

【答案】(1)以為圓心,以4為半徑的圓;(2)海里

【解析】

1)在平面直角坐標(biāo)系中,設(shè)走私船能被截獲的點(diǎn)的坐標(biāo)為,根據(jù)可得的軌跡.

2)先求出的值,再設(shè),類似于(1)中求軌跡的方法可求的軌跡,該軌跡與直線至多有一個(gè)公共點(diǎn),從而可得的取值范圍.

1)如圖,

因?yàn)?/span>,故,設(shè)走私船能被截獲的點(diǎn)的坐標(biāo)為,

,所以

整理得到,所以的軌跡是以為圓心,為半徑的圓.

2)因?yàn)?/span>與公海的最近距離20海里,故,因,故.

故直線,

設(shè),故,設(shè)走私船能被截獲的點(diǎn)的坐標(biāo)為,

,故,

整理得到

的軌跡是以為圓心,為半徑的圓.

由題設(shè)可知,該圓的圓心在直線下方且圓與直線至多有一個(gè)公共點(diǎn),

,解得,

,之間的最遠(yuǎn)距離是海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,

1)求處的切線的一般式方程;

2)請(qǐng)判斷的圖像有幾個(gè)交點(diǎn)?

3)設(shè)為函數(shù)的極值點(diǎn),的圖像一個(gè)交點(diǎn)的橫坐標(biāo),且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),則下列結(jié)論中正確的是(

A.函數(shù)的值域與的值域不相同

B.把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,就可以得到函數(shù)的圖象

C.函數(shù)在區(qū)間上都是增函數(shù)

D.是函數(shù)的極值點(diǎn),則是函數(shù)的零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,對(duì)于不相等的實(shí)數(shù)、,設(shè),,現(xiàn)有如下命題:

①對(duì)于任意不相等的實(shí)數(shù),都有;

②對(duì)于任意的及任意不相等的實(shí)數(shù)、,都有;

③對(duì)于任意的,存在不相等的實(shí)數(shù)、,使得;

④對(duì)于任意的,存在不相等的實(shí)數(shù),使得;

其中所有的真命題的序號(hào)是_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),其左焦點(diǎn)為.過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),交軸的正半軸于點(diǎn).

1)求橢圓的方程;

2)過(guò)點(diǎn)且與垂直的直線交橢圓于、兩點(diǎn),若四邊形的面積為,求直線的方程;

3)設(shè),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1若曲線在點(diǎn)處的切線斜率為,求實(shí)數(shù)的值;

2有兩個(gè)零點(diǎn),求的取值范圍;

3當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是無(wú)窮等比數(shù)列,若的每一項(xiàng)都等于它后面所有項(xiàng)的倍,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列,滿足:對(duì)任意正整數(shù),都有,,成等差數(shù)列,,成等比數(shù)列,且

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列的通項(xiàng)公式;

)設(shè)=++…+,如果對(duì)任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案