是奇函數(shù),是偶函數(shù),并且,求表達式。

解析
試題分析:為奇函數(shù) ,  ,為偶函數(shù) ,。
從而

考點:本題考查了函數(shù)奇偶性的運用
點評:利用奇偶性求函數(shù)解析式時,往往需要構造方程,然后聯(lián)立方程求解。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù),其中表示不超過的最大整數(shù),如.
 (1)求的值;
(2)若在區(qū)間上存在x,使得成立,求實數(shù)k的取值范圍;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的圖象過點,且函數(shù)的圖象關于軸對稱;
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,設函數(shù)的圖象關于直線=π對稱,其中為常數(shù),且
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若的圖象經(jīng)過點,求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù),,記。
(Ⅰ)判斷的奇偶性,并證明;
(Ⅱ)對任意,都存在,使得,.若,求實數(shù)的值;
(Ⅲ)若對于一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)當0<a時,討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在R上的奇函數(shù),且對任意,當時,都有.
(1)求證:R上為增函數(shù).
(2)若對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求的值;
(2)若當時,恒成立,求的取值范圍;
(3)對任意的是否恒成立?如果成立,給出證明,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點最近的對稱中心的坐標;
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

同步練習冊答案