16.若二項(xiàng)式($\frac{{\sqrt{5}}}{5}{x^2}+\frac{1}{x}$)6的展開(kāi)式中的常數(shù)項(xiàng)為m,則$\int\begin{array}{l}m\\ 1\end{array}({x^2}-2x)dx$=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

分析 運(yùn)用二項(xiàng)式展開(kāi)式的通項(xiàng)公式,化簡(jiǎn)整理,令x的次數(shù)為0,求出m,再由定積分的運(yùn)算法則,即可求得.

解答 解:二項(xiàng)式($\frac{{\sqrt{5}}}{5}{x^2}+\frac{1}{x}$)6的展開(kāi)式的通項(xiàng)公式為:Tr+1=${C}_{6}^{r}(\frac{\sqrt{5}}{5})^{6-r}{x}^{12-3r}$,
令12-3r=0,則r=4.
即有m=${C}_{6}^{4}•(\frac{\sqrt{5}}{5})^{2}$=3.
則$\int\begin{array}{l}m\\ 1\end{array}({x^2}-2x)dx$=${∫}_{1}^{3}$(x2-2x)dx=($\frac{1}{3}$x3-x2)${|}_{1}^{3}$=$\frac{2}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的運(yùn)用:求特定項(xiàng),同時(shí)考查定積分的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面四邊形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),且AB=1,EF=$\sqrt{2}$,CD=$\sqrt{5}$,則$\overrightarrow{AB}$•$\overrightarrow{DC}$的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)向量$\overrightarrow{a}$=(sin2x,sin$\frac{3π}{4}$),$\overrightarrow$=(cos$\frac{3π}{4}$,-cos2x),f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[0,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α,β是兩個(gè)不同的平面,m,n,l是三條不同的直線,且α∩β=l,則下列命題正確的是 ( 。
A.若m∥α,n∥β,則m∥n∥lB.若m∥α,n⊥l,則m⊥n
C.若m⊥α,n∥β,則n⊥lD.若m⊥α,n∥l,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=mx-$\frac{m}{x}$,g(x)=2lnx.
(Ⅰ)當(dāng)m=1時(shí),判斷方程f(x)=g(x)在區(qū)間(1,+∞)上有無(wú)實(shí)根.
(Ⅱ)若x∈(1,e]時(shí),不等式f(x)-g(x)<2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義運(yùn)算a?b為執(zhí)行如圖所示的程序框圖輸出的S值,則(2cos$\frac{5π}{3}$)?(2tan$\frac{5π}{4}$)的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)在(0,+∞)上為減函數(shù)的是(  )
A.y=-|x-1|B.y=exC.y=ln(x+1)D.y=-x(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖1,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),AC∩EF=O.沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2的五棱錐P-ABFED,且PB=$\sqrt{10}$.
(1)求證:BD⊥平面POA;
(2)求四棱錐P-BFED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ex-ax2
(1)求函數(shù)f(x)在點(diǎn)P(0,1)處的切線方程;
(2)當(dāng)a>0時(shí),若函數(shù)f(x)為R上的單調(diào)遞增函數(shù),試求a的范圍;
(3)當(dāng)a≤0時(shí),證明函數(shù)f(x)不出現(xiàn)在直線y=x+1的下方.

查看答案和解析>>

同步練習(xí)冊(cè)答案