3.數(shù)列{an}前n項的和Sn=n2+1,則a3=5,a5=9.

分析 直接利用an=Sn-Sn-1(n≥2)求解.

解答 解:∵數(shù)列{an}前n項的和Sn=n2+1,
∴${a}_{3}={S}_{3}-{S}_{2}={3}^{2}+1-{2}^{2}-1=5$;
${a}_{5}={S}_{5}-{S}_{4}={5}^{2}+1-{4}^{2}-1=9$.
故答案為:5;9.

點評 本題考查數(shù)列遞推式,考查了由數(shù)列的前n項和求數(shù)列中的項,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.(文)不等式ax2+bx+2>0的解集為($-\frac{1}{2},\frac{1}{3}$),則ab的值為(  )
A.24B.-24C.12D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tanα=$-\frac{4}{3}$,則$\frac{sinα+cosα}{sinα-cosα}$等于( 。
A.$\frac{1}{7}$B.$-\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法中正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若$α=\frac{π}{6}$,則$sinα=\frac{1}{2}$”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x3-3x.
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-m在$[{-\frac{3}{2},3}]$上有三個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{\begin{array}{l}|lgx|({0<x<10})\\-\frac{1}{2}x+6({x≥10})\end{array}\right.$,若a<b<c,且f(a)=f(b)=f(c),則abc的取值范圍是(10,12).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.奇函數(shù)f(x)定義域是(t,2t+3),則t=( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點與拋物線C2:y2=4x的焦點相同,記為F,設(shè)點M是兩曲線在第一象限內(nèi)的公共點,且|MF|=$\frac{5}{3}$,則M點的橫坐標是$\frac{2}{3}$,a+b=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.對于函數(shù)y=lg$\frac{x}{100}$的圖象給出三個命題:下述命題中正確命題的序號是(1),(2),(3).
(1)存在直線l1,函數(shù)y=lg$\frac{x}{100}$的圖象與函數(shù)y=100•10x的圖象關(guān)于直線l1對稱;
(2)存在直線l2,函數(shù)y=lg$\frac{x}{100}$的圖象與函數(shù)y=log0.1$\frac{x}{100}$的圖象關(guān)于直線l2對稱;
(3)存在直線l3,函數(shù)y=lg$\frac{x}{100}$的圖象與函數(shù)y=log0.1x的圖象關(guān)于直線l3對稱.

查看答案和解析>>

同步練習(xí)冊答案