【題目】是拋物線為上的一點(diǎn),以S為圓心,r為半徑做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長(zhǎng)SA、SB,分別交拋物線于C、D兩點(diǎn).

求拋物線的方程.

求證:直線CD的斜率為定值.

【答案】(1);(2)定值,證明見(jiàn)解析

【解析】

(1)將點(diǎn)(1,1)代入y2=2pxp>0),解得p,即可得出.

(2)設(shè)直線SA的方程為:y﹣1=kx﹣1),Cx1,y1).與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系可得C坐標(biāo). 由題意有SASB,可得直線SB的斜率為﹣k,同理可得D坐標(biāo),再利用向量計(jì)算公式即可得出.

將點(diǎn)代入,得,解得

拋物線方程為:

證明:設(shè)直線SA的方程為:,

聯(lián)立,聯(lián)立得:,

,,

由題意有,直線SB的斜率為

設(shè)直線SB的方程為:,

聯(lián)立,聯(lián)立得:

,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)與函數(shù)的圖像有兩個(gè)不同的交點(diǎn) ,且.

(1)求實(shí)數(shù)的取值范圍;

(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過(guò)點(diǎn)

(1)求橢圓的方程;

(2)設(shè)橢圓與軸的非負(fù)半軸交于點(diǎn),過(guò)點(diǎn)作互相垂直的兩條直線,分別交橢圓于兩點(diǎn),連接,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)a=1時(shí),求:①函數(shù)在點(diǎn)P(1,)處的切線方程;②函數(shù)的單調(diào)區(qū)間和極值;

(2)若不等式恒成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線過(guò)坐標(biāo)原點(diǎn),的方程為

(1)當(dāng)直線的斜率為時(shí)與圓相交所得的弦長(zhǎng)

(2)設(shè)直線與圓交于兩點(diǎn),的中點(diǎn),求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 (其中為圓心)上的每一點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的一半,得到曲線.

1)求曲線的方程;

2若點(diǎn)為曲線上一點(diǎn),過(guò)點(diǎn)作曲線的切線交圓于不同的兩點(diǎn)(其中的右側(cè)),已知點(diǎn).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是拋物線為上的一點(diǎn),以S為圓心,r為半徑做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長(zhǎng)SA、SB,分別交拋物線于C、D兩點(diǎn).

求拋物線的方程.

求證:直線CD的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題:實(shí)數(shù)滿足,其中,命題:實(shí)數(shù)滿足.

(1),且為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )

我離開學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;

我放學(xué)回家騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;

我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案