【題目】類比平面內(nèi) “垂直于同一條直線的兩條直線互相平行”的性質(zhì),可推出空間下列結(jié)論:
①垂直于同一條直線的兩條直線互相平行
②垂直于同一個(gè)平面的兩條直線互相平行
③垂直于同一條直線的兩個(gè)平面互相平行
④垂直于同一個(gè)平面的兩個(gè)平面互相平行
則正確的結(jié)論是( )
A.①② B.③④ C.②③ D.①④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體ABCD-A1B1C1D1,E是DD1的中點(diǎn),F(xiàn)是BB1的中點(diǎn),設(shè)過點(diǎn)C1,E,F(xiàn)三點(diǎn)的平面為α,則正方體被平面α所截的截面的形狀為( )
A.菱形 B.矩形
C.梯形 D.五邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)滿足:對任意的x1、x2∈R,都有(x1-x2)[f(x1)-f(x2)]>0,則f(-3)與f(-)大小關(guān)系是 ( )
A. f(-3)>f(-) B. f(-3)≥f(-)
C. f(-3)<f(-) D. f(-3)≤f(-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求f(x)的不動(dòng)點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有840名職工, 現(xiàn)采用系統(tǒng)抽樣方法, 抽取42人做問卷調(diào)查, 將840人按1, 2,…… , 840隨機(jī)編號, 則抽取的42人中, 編號落入?yún)^(qū)間[481, 720]的人數(shù)為
A.11 B.1 C.12 D.14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是R上的增函數(shù),且f(m+3)≤f(5),則實(shí)數(shù)m的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:
(1)A∩(B∩C);
(2)A∩CA(B∪C).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={2,3,4,5,6},Q={3,5,7},若M=P∩Q,則M的子集個(gè)數(shù)為( )
A.5 B.4 C.3 D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com