【題目】設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=2,b=3,cosC= .
(1)求△ABC的面積;
(2)求sin(C﹣A)的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知點,動點, 分別在軸, 軸上運動, , 為平面上一點, ,過點作平行于軸交的延長線于點.
(Ⅰ)求點的軌跡曲線的方程;
(Ⅱ)過點作軸的垂線,平行于軸的兩條直線, 分別交曲線于, 兩點(直線不過),交于, 兩點.若線段中點的軌跡方程為,求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品.為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如下表所示:
已知.
(1)求出的值;
(2)已知變量, 具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(元)的線性回歸方程;
(3)用表示用正確的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求抽取的2個銷售數(shù)據(jù)中至少有1個是“好數(shù)據(jù)”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以坐標原點為極點,以x軸的非負半軸為極軸建立極坐標系,已知曲線C的參數(shù)方程為 (t為參數(shù)) .
(1)若曲線C在點(1,1)處的切線為l,求l的極坐標方程;
(2)若點A的極坐標為,且當參數(shù)t∈[0,π]時,過點A的直線m與曲線C有兩個不同的交點,試求直線m的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知,若對任意,有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為倡導全體學生為特困學生捐款,舉行“一元錢,一片心,誠信用水”活動,學生在購水處每領取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(單位:元) | 165 | 142 | 148 | 125 | 150 |
(1)求y關于x的線性回歸方程;
(2)預測售出8箱水的收益是多少元?
附:回歸直線的最小二乘法估計公式分別為: =, =﹣,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC三個頂點坐標分別為:A(1,0),B(1,4),C(3,2),直線l經(jīng)過點(0,4).
(1)求△ABC外接圓⊙M的方程;
(2)若直線l與⊙M相交于P,Q兩點,且|PQ|=2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了該農(nóng)產(chǎn)品.以()表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將表示為的函數(shù);
(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asin B=b.
(1)求角A的大小; (2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com