【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)設(shè)射線l的極坐標(biāo)方程為,若射線l與曲線C交于A,B兩點,求AB的長;
(2)設(shè)M,N是曲線C上的兩點,若∠MON,求的面積的最大值.
【答案】(1);(2)1
【解析】
(1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;
(2)設(shè)M,N,求出范圍,再利用,通過三角函數(shù)關(guān)系式的恒等變換及正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.
解:(1)曲線C的參數(shù)方程為(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為,其為過原點的圓
整理得,其為過坐標(biāo)原點的圓,
根據(jù)轉(zhuǎn)換為極坐標(biāo)方程為,
整理得,
射線l的極坐標(biāo)方程為與曲線C相交于A和B兩點,
由于射線l:過坐標(biāo)原點,故其中有一個交點為坐標(biāo)原點,
所以,
得;
(2)設(shè)M,N,
由于直線OC的斜率為,
又圓C過原點,故過原點與圓C相切的切線的斜率為k,
從而,得,
則,
當(dāng),即時,的最大值為1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標(biāo)原點, 是雙曲線上在第一象限內(nèi)的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第24屆冬奧會將于2022年2月4日至2月22日在北京市和河北省張家口市聯(lián)合舉行,這是中國歷史上第一次舉辦冬季奧運會.為了宣傳冬奧會,讓更多的人了解、喜愛冰雪項目,某校高三年級舉辦了冬奧會知識競賽(總分100分),并隨機(jī)抽取了名中學(xué)生的成績,繪制成如圖所示的頻率分布直方圖.已知前三組的頻率成等差數(shù)列,第一組和第五組的頻率相同.
(Ⅰ)求實數(shù),的值,并估計這名中學(xué)生的成績平均值;(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(Ⅱ)已知抽取的名中學(xué)生中,男女生人數(shù)相等,男生喜歡花樣滑冰的人數(shù)占男生人數(shù)的,女生喜歡花樣滑冰項的人數(shù)占女生人數(shù)的,且有95%的把握認(rèn)為中學(xué)生喜歡花樣滑冰與性別有關(guān),求的最小值.
參考數(shù)據(jù)及公式如下:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形為菱形,,二面角為直二面角,點是棱的中點.
(Ⅰ)求證:;
(Ⅱ)若,當(dāng)二面角的余弦值為時,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為,為的中點,下列說法中正確的是( )
A.與所成的角大于
B.點到平面的距離為
C.三棱錐的外接球的表面積為
D.直線與平面所成的角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,二面角中,,射線,分別在平面,內(nèi),點A在平面內(nèi)的射影恰好是點B,設(shè)二面角、與平面所成角、與平面所成角的大小分別為,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二某班共有45人,學(xué)號依次為1、2、3、…、45,現(xiàn)按學(xué)號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學(xué)號為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個同學(xué)的學(xué)號應(yīng)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加,為了制定提升農(nóng)民收入、實現(xiàn)2020年脫貧的工作計劃,該地扶貧辦統(tǒng)計了2019年50位農(nóng)民的年收入并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的平均年收入(單位:千元);(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入X服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得=6.92,利用該正態(tài)分布,求:
①在扶貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入標(biāo)準(zhǔn)大約為多少千元?
②為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每位農(nóng)民的年收入互相獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
附參考數(shù)據(jù):,若隨機(jī)變量X服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費中手機(jī)支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學(xué)生在暑期社會活動中針對人們生活中的支付方式進(jìn)行了調(diào)查研究. 采用調(diào)查問卷的方式對100名18歲以上的成年人進(jìn)行了研究,發(fā)現(xiàn)共有60人以手機(jī)支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.
(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;
(2)某商家為了鼓勵人們使用手機(jī)支付,做出以下促銷活動:凡是用手機(jī)支付的消費者,商品一律打八折. 已知某商品原價50元,以上述調(diào)查的支付方式的頻率作為消費者購買該商品的支付方式的概率,設(shè)銷售每件商品的消費者的支付方式都是相互獨立的,求銷售10件該商品的銷售額的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com