一個盒中有8件產(chǎn)品中,其中2件不合格品.從這8件產(chǎn)品中抽取2件,試求:
(Ⅰ)若采用無放回抽取,求取到的不合格品數(shù)X的分布列;
(Ⅱ)若采用有放回抽取,求至少取到1件不合格品的概率.
考點:離散型隨機變量的期望與方差,離散型隨機變量及其分布列
專題:概率與統(tǒng)計
分析:(Ⅰ)先確定X的可能值,再分別求出其概率,列出表即可,
(Ⅱ)設事件A為“至少取到1件不合格品”,則對立事件
.
A
為“沒有不合格品”,利用互斥事件的概率即可求出.
解答: 解:(Ⅰ)取到的不合格品數(shù)X的可能取值為0,1,2
P(X=0)=
C
0
2
C
2
6
C
2
8
=
15
28

P(X=1)=
C
1
2
C
1
6
C
2
8
=
12
28
=
3
7
;
P(X=2)=
C
2
2
C
0
6
C
2
8
=
1
28

所以取到的不合格品數(shù)X的分布列為:
X 0 1 2
P  
15
28
 
3
7
 
1
28
(Ⅱ)設事件A為“至少取到1件不合格品”,則對立事件
.
A
為“沒有不合格品”,即“2件都是正品”,P(
.
A
)=
6×6
8×8
=
9
16

P(A)=1-P(
.
A
)=1-
9
16
=
7
16

答:至少取到1件次品的概率
7
16
點評:本題考查了分布列的問題和互斥事件的概率的問題,關鍵是確定隨機變量的可能值,屬于中檔題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知非零向量
a
,
b
,
c
滿足
a
+
b
+
c
=0,向量
a
,
b
的夾角為120°,且|
b
|=2|
a
|,求向量
a
c
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是橢圓E:
x2
a2
+y2=1(a>1)的左、右焦點,A,B分別為橢圓的上、下頂點,若F2到直線AF1的距離為
2

(1)求橢圓E的方程;
(2)過橢圓的右頂點C的直線l與橢圓交于點D(點D不同于點C),交y軸于點P(點P不同于坐標原點O),直線AD與BC交于點Q,試判斷
OP
OQ
是否為定值,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,求相應的等差數(shù)列{an}的有關未知數(shù):
(1)a1=20,an=54,Sn=999,求d及n;
(2)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線L1,L2都過點(1,-2)且互相垂直,若拋物線y=ax2與兩直線中至少一條相交,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,點E在PD上,且PE=2ED.
(Ⅰ)求二面角P-AC-E的大;
(Ⅱ)試在棱PC上確定一點F,使得BF∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:x2+y2-2x-4y+m=0
(1)當m為何值時,曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線3x+4y-6=0交于M、N兩點,且|MN|=2
3
,求m的值.
(3)在(1)的條件下,設直線x-y-1=0與圓C交于A,B兩點,是否存在實數(shù)m,使得以AB為直徑的圓過原點,若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面上,O為原點,M為動點,|
OM
|=
5
,
ON
=
2
5
5
OM
.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(1)求曲線C的方程;
(2)證明不存在直線l,使得|BP|=|BQ|;
(3)過點P作y軸的平行線與曲線C的另一交點為S,若
AP
=t
AQ
,證明
SB
=t
BQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一輛汽車在筆直的公路上變速行駛,設汽車在時刻t的速度為v(t)=-t2+4,(0≤t≤3)(t的單位:h,v的單位:km/h)則這輛車行駛的最大位移是
 
km.

查看答案和解析>>

同步練習冊答案