精英家教網 > 高中數學 > 題目詳情

【題目】用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”則表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個無區(qū)別的紅球、5個無區(qū)別的藍球、5個有區(qū)別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是(
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5

【答案】A
【解析】解:從5個無區(qū)別的紅球中取出若干個球,可以1個球都不取、或取1個、2個、3個、4個、5個球,共6種情況,則其所有取法為1+a+a2+a3+a4+a5;從5個無區(qū)別的藍球中取出若干個球,由所有的藍球都取出或都不取出,得其所有取法為1+b5;從5個有區(qū)別的黑球中取出若干個球,可以1個球都不取、或取1個、2個、3個、4個、5個
球,共6種情況,則其所有取法為1+ c+ c2+ c3+ c4+ c5=(1+c)5 , 根據分步乘法計數原理得,適合要求的所有取法是(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
故選:A.
【考點精析】通過靈活運用歸納推理,掌握根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某家具廠有方木料90 ,五合板600,準備加工成書桌和書櫥出售.已知生產每張書桌需要方木料0.1 ,五合板2 ,生產每個書櫥需要方木料0.2,五合板1 ,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元.請問怎樣安排生產可使所得利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的頂點在原點,過點A(-4,4)且焦點在x軸.

(1)求拋物線方程;

(2)直線l過定點B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列的前項和為,且滿足:

(1)求的通項公式;

(2)設,求的前項和;

(3)在(2)的條件下,對任意,都成立,求整數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察如圖,則第__行的各數之和等于20172

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cosx(sinx+cosx)﹣
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數f(x)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】福利彩票“雙色球”中紅球的號碼可以從01,02,03,…,32,33這33個二位號碼中選取,小明利用如圖所示的隨機數表選取紅色球的6個號碼,選取方法是從第1行第9列和第10列的數字開始從左到右依次選取兩個數字,則第四個被選中的紅色球號碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,∠A=30°a=4,b=5,那么滿足條件的△ABC(  )

A. 無解 B. 有一個解 C. 有兩個解 D. 不能確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經銷商經銷某種農產品,在一個銷售季度內,每售出1t該產品獲利潤500元,未售出的產品,每1t虧損300.根據歷史資料,得到銷售季度內市場需求量的頻率分布直圖,如右圖所示.經銷商為下一個銷售季度購進了130t該農產品.(單位:t,100≤≤150)表示下一個銷售季度內的市場需求量,T(單位:)表示下一個銷售季度內經銷該農產品的利潤.

)將T表示為的函數;

)根據直方圖估計利潤T不少于57000元的概率.

查看答案和解析>>

同步練習冊答案