19.如圖為正方體ABCD-A1B1C1D1的平面展開圖,其中E、M、N分別為A1D1、BC、CC1的中點,
(Ⅰ) 作出該正方體的直觀圖;
(Ⅱ) 求證:MN∥平面BEC1

分析 (Ⅰ)根據(jù)該正方體的平面展開圖及斜二測畫法即可作出該正方體的水平放置的直觀圖;
(Ⅱ)根據(jù)中位線的性質便有MN∥BC1,從而得出MN∥平面BEC1

解答 解:(Ⅰ)該正方體的水平放置直觀圖如下圖所示:

(Ⅱ)證明:M,N分別為BC,CC1的中點;
∴MN∥BC1,BC1?平面BEC1,MN?平面BEC1;
∴MN∥平面BEC1

點評 本題主要考查正方體的水平放置的直觀圖的畫法,由立體圖形的平面展開圖,可以畫出其水平放置的直觀圖,以及中位線的性質,線面平行的判定定理,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知映射f:A→B,其中A=B=R,對應法則f:x→y=($\frac{1}{3}$)x2+2x,對于實數(shù)m∈B在集合A中存在元素與之對應,則m的取值范圍是(  )
A.m≤3B.m≥3C.m>3D.0<m≤3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(-1)=0,當x>0時,xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知a,b,c分別為△ABC三個內角A,B,C的對邊,$acosC+\sqrt{3}asinC-b-c=0$
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設點P(x,y)是曲線a|x|+b|y|=1(a≥0,b≥0)上任意一點,其坐標(x,y)均滿足$\sqrt{{x^2}+{y^2}+4x+4}+\sqrt{{x^2}+{y^2}-4x+4}≤8$,則$2a+\sqrt{3}b$的取值范圍為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)中,在其定義域內既是奇函數(shù),又是減函數(shù)的是( 。
A.$f(x)=\frac{1}{x}$B.$f(x)=\sqrt{-x}$C.f(x)=2-x-2xD.$f(x)={log_{\frac{1}{2}}}|x|$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若奇函數(shù)f(x)在區(qū)間[4,9]上是減函數(shù)且最小值為2,則f(x)在區(qū)間[-9,-4]上是( 。
A.增函數(shù)且最大值為-2B.增函數(shù)且最小值為-2
C.減函數(shù)且最小值為-2D.減函數(shù)且最大值為-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.命題P:y=ln(x2-kx+2)的定義域為R;命題q:x>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則$\frac{(a+b)^{2}}{cd}$≥k+1恒成立,若命題p∨q為真命題,p∧q為假命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,等式f(x)•f(y)=f(x+y)成立,若數(shù)列{an}滿足f(an+1)=$\frac{1}{f(\frac{1}{1+{a}_{n}})}$,(n∈N+)且a1=f(0),則下列結論成立的是( 。
A.f(a2013)>f(a2016B.f(a2014)>f(a2015C.f(a2016)<f(a2015D.f(a2014)<f(a2016

查看答案和解析>>

同步練習冊答案