11.若奇函數(shù)f(x)在區(qū)間[4,9]上是減函數(shù)且最小值為2,則f(x)在區(qū)間[-9,-4]上是(  )
A.增函數(shù)且最大值為-2B.增函數(shù)且最小值為-2
C.減函數(shù)且最小值為-2D.減函數(shù)且最大值為-2

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的關(guān)系進(jìn)行判斷即可.

解答 解:若奇函數(shù)f(x)在區(qū)間[4,9]上是減函數(shù)且最小值為2,
則f(x)在區(qū)間[-9,-4]上是減函數(shù),一定有最大值-2,
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=xlnx-$\frac{1}{2}$x2
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)已知a為正實(shí)數(shù),若不等式f(x)≥(b+$\frac{1}{2}$)x2+ax的解集不為空,求a(b+1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(m,1),如果向量$\overrightarrow a$與$\overrightarrow b$平行,則m的值為(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖為正方體ABCD-A1B1C1D1的平面展開圖,其中E、M、N分別為A1D1、BC、CC1的中點(diǎn),
(Ⅰ) 作出該正方體的直觀圖;
(Ⅱ) 求證:MN∥平面BEC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個(gè)圖象中,不能作為函數(shù)圖象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知冪函數(shù)f(x)=x${\;}^{{m}^{2}-2m-3}$(m∈N*)的圖象關(guān)于y軸對(duì)稱,且在(0,+∞)上是減函數(shù),則滿足(a+1)${\;}^{-\frac{m}{3}}$<(3-2a)${\;}^{-\frac{m}{3}}$的a的取值范圍是(-∞,-1)∪($\frac{2}{3}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知2x2+x-3=(x-1)(ax+b),則a,b的值分別為( 。
A.2,3B.2,-3C.-2,3D.-2,-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對(duì)于下列四個(gè)命題
p1:?x∈(0,+∞),($\frac{1}{2}$)x<($\frac{1}{3}$)x   
p2:?x∈(0,1),log${\;}_{\frac{1}{2}}$x>log${\;}_{\frac{1}{3}}$x
p3:?x∈(0,+∞),($\frac{1}{2}$)x>log${\;}_{\frac{1}{2}}$x    
p4:?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x.
其中的真命題是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知方程$\frac{{x}^{2}}{m}$+y2=1表示的曲線是焦點(diǎn)在x軸上且離心率為$\frac{1}{2}$的橢圓,則m=$\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案