【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的極大值;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.
【答案】(Ⅰ)極大值為;(Ⅱ).
【解析】
(Ⅰ)利用導(dǎo)數(shù)分析函數(shù)在定義域上的單調(diào)性,由此可求得函數(shù)的極大值;
(Ⅱ)求得,對(duì)實(shí)數(shù)的取值進(jìn)行分類討論,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出該函數(shù)的極小值,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.
(Ⅰ)函數(shù)的定義域?yàn)?/span>,
當(dāng)時(shí),,,
令,得或.
當(dāng)或時(shí),;當(dāng)時(shí),.
函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.
所以函數(shù)的極大值為;
(Ⅱ)函數(shù)的定義域?yàn)?/span>,.
①當(dāng)時(shí),對(duì)任意的恒成立,
當(dāng)時(shí),;當(dāng)時(shí),.
函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
所以函數(shù)的極小值為,所以不合題意.
②當(dāng)時(shí),令解得或.
(i)當(dāng)時(shí),即當(dāng)時(shí),
當(dāng)或時(shí),;當(dāng)時(shí),.
函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.
所以函數(shù)的極小值為,
可得,得,
結(jié)合,有,解得;
(ii)當(dāng)時(shí),對(duì)任意的,則,
函數(shù)在上單調(diào)遞增,沒有極值;
(iii)當(dāng)時(shí),即當(dāng)時(shí),
當(dāng)或時(shí),;當(dāng)時(shí),.
函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減.
所以,函數(shù)的中極小值為,解得.
結(jié)合,所以.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一某班以小組為單位在周末進(jìn)行了一次社會(huì)實(shí)踐活動(dòng),且每小組有5名同學(xué),活動(dòng)結(jié)束后,對(duì)所有參加活動(dòng)的同學(xué)進(jìn)行測評(píng),其中A,B兩個(gè)小組所得分?jǐn)?shù)如下表:
A組 | 86 | 77 | 80 | 94 | 88 |
B組 | 91 | 83 | ? | 75 | 93 |
其中B組一同學(xué)的分?jǐn)?shù)已被污損,看不清楚了,但知道B組學(xué)生的平均分比A組學(xué)生的平均分高出1分.
(1)若從B組學(xué)生中隨機(jī)挑選1人,求其得分超過85分的概率;
(2)從A組這5名學(xué)生中隨機(jī)抽取2名同學(xué),設(shè)其分?jǐn)?shù)分別為m,n,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),直線:,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于,兩點(diǎn),為直線上一點(diǎn),且滿足,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若和在有相同的單調(diào)區(qū)間,求的取值范圍;
(Ⅱ)令(),若在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(i)求的取值范圍;
(ii)設(shè)兩個(gè)極值點(diǎn)分別為, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班要從5名男生3名女生中選出5人擔(dān)任5門不同學(xué)科的課代表,請(qǐng)分別求出滿足下列條件的方法種數(shù).
(1)所安排的女生人數(shù)必須少于男生人數(shù);
(2)其中的男生甲必須是課代表,但又不能擔(dān)任數(shù)學(xué)課代表;
(3)女生乙必須擔(dān)任語文課代表,且男生甲必須擔(dān)任課代表,但又不能擔(dān)任數(shù)學(xué)課代表.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個(gè)單位長度,向上平移個(gè)單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人是“微信控”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知定點(diǎn),點(diǎn)P是圓上任意一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn).
(1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;
(2)過定點(diǎn)且斜率為的直線與的軌跡交于兩點(diǎn),若,求點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,,側(cè)面中心為O,點(diǎn)E是側(cè)棱上的一個(gè)動(dòng)點(diǎn),有下列判斷,正確的是( )
A.直三棱柱側(cè)面積是B.直三棱柱體積是
C.三棱錐的體積為定值D.的最小值為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com