9.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右頂點分別為A、B,點M為C上不同于A、B的任意一點,則直線MA、MB的斜率之積為( 。
A.$\frac{1}{4}$B.-4C.-$\frac{1}{4}$D.4

分析 求得A和B點坐標,求得直線MA和MB的斜率,由M在橢圓上,x02=4-4y02,即可求得k1•k2=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=-$\frac{1}{4}$.

解答 解:由題意得,橢圓C:$\frac{{x}^{2}}{4}$+y2=1焦點在x軸上,a=2,b=1,
設M(x0,y0)(y0≠0),A(-2,0),B(2,0),
直線MA的斜率k1=$\frac{{y}_{0}}{{x}_{0}+2}$,MB的斜率k2=$\frac{{y}_{0}}{{x}_{0}-2}$,
又點M在橢圓上,
∴$\frac{{x}_{0}^{2}}{4}+{y}_{0}^{2}=1$(y0≠0),x02=4-4y02
∴k1•k2=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=-$\frac{1}{4}$,
直線MA、MB的斜率之積-$\frac{1}{4}$,
故選C.

點評 本題考查橢圓的標準方程,以及橢圓的簡單性質(zhì)的應用,直線的斜率公式的應用,考查計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合A={x|x>-1},則下列選項正確的是( 。
A.0⊆AB.{0}⊆AC.∅∈AD.{0}∈A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知實數(shù)a,b均大于0,且$({\frac{1}{a}+\frac{1}})\sqrt{{a^2}+{b^2}}≥2m-4$總成立,則實數(shù)m的取值范圍是(-∞,2+$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知tanα=-2,tan(α-β)=3,則tanβ=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=logax(a>0且a≠1).
(1)若f(3a+4)≥f(5a),求實數(shù)a的取值范圍;
(2)當a=$\frac{1}{2}$時,設g(x)=f(x)-3x+4,判斷g(x)在(1,2)上零點的個數(shù)并證明:對任意λ>0,都存在μ>0,使得g(x)<0在x∈(λμ,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C1,C2均為中心在原點,焦點在x軸上的橢圓,離心率均為$\frac{{\sqrt{2}}}{2}$,其中C1的焦點坐標分別為(-1,0),(1,0),C2的左右頂點坐標為(-2,0),(2,0).
(Ⅰ)求橢圓C1,C2的方程;
(Ⅱ)若直線l與C1,C2相交于A,B,C,D四點,如圖所示,試判斷|AC|和|BD|的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,側(cè)面BB1C1C 為菱形,B1C與BC1交于點O,AO⊥平面BB1C1C
(1)求證:平面ABC1⊥平面A1B1C;
(2)若AC⊥AB1,∠BCC1=120°,BC=1,求點B1到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在△ABC中,$AB=2AC,cosB=\frac{{2\sqrt{5}}}{5}$,點D在線段BC上.
(1)當BD=AD時,求$\frac{AD}{AC}$的值;
(2)若AD是∠A的平分線,$BC=\sqrt{5}$,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設ω>0,將函數(shù)f(x)=$\sqrt{2}$cosωx的圖象向左平移$\frac{π}{2}$個單位,若所得的圖象與原圖象重合,則正數(shù)ω的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案