18.在直角坐標(biāo)系中作出下列各角,并指出它們屬于哪個(gè)象限
(1)840°;
(2)-405°;
(3)2345°.

分析 先在直角坐標(biāo)系中作出各角,進(jìn)而數(shù)形結(jié)合可得答案.

解答 解:(1)840°在直角坐標(biāo)系中位置如下:

故是第二象限的角;
(2)-405°在直角坐標(biāo)系中位置如下:

故是第四象限的角;
(3)2345°在直角坐標(biāo)系中位置如下:

故是第三象限的角.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是象限角和軸線角,數(shù)形結(jié)合是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知α是銳角,求證:sinα<α<tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個(gè)球內(nèi)切于一個(gè)圓錐,且圓錐的高等于球的直徑的兩倍,試證明圓錐的全面積等于球表面積的兩倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+2=2an,且數(shù)列{bn}滿足b1=1,bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{1-(-1)^{n}}{2}$an+$\frac{1+(-1)^{n}}{2}$bn,求數(shù)列{cn}的前2n項(xiàng)和T2n;
(3)求數(shù)列{an•bn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=4x+3,g(x)=x2,求滿足f[g(x)]=g[f(x)]的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.判斷下列函數(shù)的奇偶性:
(1)f(x)=cos($\frac{3}{2}$π+2x)+x2sinx;
(2)f(x)=$\sqrt{1-2cosx}$+$\sqrt{2cosx-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,已知sinA=cosBcosC,則必有(  )
A.sinB+sinC為常數(shù)B.cosB+cosC為常數(shù)C.tanB+tanC為常數(shù)D.sinB+cosC為常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=sin(2x-$\frac{π}{6}$).
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(3)由y=sinx的圖象經(jīng)怎樣的變換可以得到該函數(shù)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸被圓x2+y2=b2與x軸的兩個(gè)交點(diǎn)三等分,則橢圓的離心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案