【題目】空氣質(zhì)量問題,全民關(guān)注,有需求就有研究,某科研團(tuán)隊根據(jù)工地常用高壓水槍除塵原理,制造了霧霾神器﹣﹣﹣霧炮,雖然霧炮不能徹底解決問題,但是能在一定程度上起到防霾、降塵的作用,經(jīng)過測試得到霧炮降塵率的頻率分布直方圖:
若降塵率達(dá)到18%以上,則認(rèn)定霧炮除塵有效.
(1)根據(jù)以上數(shù)據(jù)估計霧炮除塵有效的概率;
(2)現(xiàn)把A市規(guī)劃成三個區(qū)域,每個區(qū)域投放3臺霧炮進(jìn)行除塵(霧炮之間工作互不影響),若在一個區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,求后期投入費用的分布列和期望.
【答案】
(1)
解:估計霧炮除塵有效的概率P= 5×0.05+5×0.04+5×0.03+5×0.01=
(2)
解:由(1)可得:在一個區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,
因此在一個區(qū)域內(nèi)需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理的概率P= = .
∴后期投入?yún)^(qū)域X~B .后期投入費用ξ=20X(萬元).
P(ξ=20k)=P(X=k)= .
ξ的分布列為:
ξ | 0 | 20 | 40 | 60 |
P |
Eξ=0+ +40× +60× =7.5(萬元)
【解析】(1)估計霧炮除塵有效的概率P= 5×0.05+5×0.04+5×0.03+5×0.01.(2)由(1)可得:在一個區(qū)域內(nèi)的3臺霧炮降塵率都低于18%,則需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理,
因此在一個區(qū)域內(nèi)需對該區(qū)域后期追加投入20萬元繼續(xù)進(jìn)行治理的概率P= = .后期投入?yún)^(qū)域X~B .后期投入費用ξ=20X(萬元).利用P(ξ=20k)=P(X=k)= 即可得出.
【考點精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是單位圓O和x軸正半軸的交點,P,Q是圓O上兩點,O為坐標(biāo)原點,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面積為4,b=4,求△ABC的周長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園有三條觀光大道AB,BC,AC圍成直角三角形,其中直角邊BC=200m,斜邊AB=400m,現(xiàn)有甲、乙、丙三位小朋友分別在AB,BC,AC大道上嬉戲,所在位置分別記為點D,E,F(xiàn).
(1)若甲、乙都以每分鐘100m的速度從點B出發(fā)在各自的大道上奔走,到大道的另一端時即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設(shè)∠CEF=θ,乙丙之間的距離是甲乙之間距離的2倍,且∠DEF= ,請將甲乙之間的距離y表示為θ的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝批發(fā)市場1-5月份的服裝銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷售量 (萬件) | 3 | 6 | 4 | 7 | 8 |
利潤 (萬元) | 19 | 34 | 26 | 41 | 46 |
(1)從這五個月的利潤中任選2個,分別記為, ,求事件“, 均不小于30”的概率;
(2)已知銷售量與利潤大致滿足線性相關(guān)關(guān)系,請根據(jù)前4個月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的利潤的估計數(shù)據(jù)與真實數(shù)據(jù)的誤差不超過2萬元,則認(rèn)為得到的利潤的估計數(shù)據(jù)是理想的.請用表格中第5個月的數(shù)據(jù)檢驗由(2)中回歸方程所得的第5個月的利潤的估計數(shù)據(jù)是否理想.參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=loga(x+3)﹣1(a>0且a≠1)的圖象恒過定點A,若點A在mx+ny+2=0上,其中mn>0,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當(dāng)a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).
(1)當(dāng)甲城市投資50萬元時,求此時公司總收益;
(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)平面向量基本定理,若為一組基底,同一平面的向量可以被唯一確定地表示為 = ,則向量與有序?qū)崝?shù)對一一對應(yīng),稱為向量的基底下的坐標(biāo);特別地,若分別為軸正方向的單位向量,則稱為向量的直角坐標(biāo).
(I)據(jù)此證明向量加法的直角坐標(biāo)公式:若,則;
(II)如圖,直角中, , 點在上,且,求向量在基底下的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com