已知函數(shù),且任意的
(1)求、、的值;
(2)試猜想的解析式,并用數(shù)學(xué)歸納法給出證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是定義在上的函數(shù),當(dāng),且時(shí),有.
(1)證明是奇函數(shù);
(2)當(dāng)時(shí),(a為實(shí)數(shù)). 則當(dāng)時(shí),求的解析式;
(3)在(2)的條件下,當(dāng)時(shí),試判斷在上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為奇函數(shù),且在處取得極大值2.
(Ⅰ)求的解析式;
(Ⅱ)過點(diǎn)(可作函數(shù)圖像的三條切線,求實(shí)數(shù)的取值范圍;
(Ⅲ)若對于任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)作出函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的單調(diào)區(qū)間;以及在各單調(diào)區(qū)間上的增減性.
(Ⅱ)求函數(shù)當(dāng)時(shí)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(I)求x為何值時(shí),上取得最大值;
(II)設(shè)是單調(diào)遞增函數(shù),求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com