【題目】小明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽相互獨(dú)立):
場(chǎng)次 | 投籃次數(shù) | 命中次數(shù) |
主場(chǎng)1 | 22 | 12 |
主場(chǎng)2 | 15 | 12 |
主場(chǎng)3 | 12 | 8 |
主場(chǎng)4 | 23 | 8 |
主場(chǎng)5 | 24 | 20 |
場(chǎng)次 | 投籃次數(shù) | 命中次數(shù) |
客場(chǎng)1 | 18 | 8 |
客場(chǎng)2 | 13 | 12 |
客場(chǎng)3 | 21 | 7 |
客場(chǎng)4 | 18 | 15 |
客場(chǎng)5 | 25 | 12 |
(1)從上述比賽中隨機(jī)選擇一場(chǎng),求小明在該場(chǎng)比賽中投籃命中率超過0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求小明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6的概率.
【答案】(1)0.5(2)
【解析】
(1)根據(jù)圖表直接判斷即可.
(2)根據(jù)獨(dú)立事件概率的公式求解即可.
解:(1)根據(jù)投籃統(tǒng)計(jì)數(shù)據(jù),在10場(chǎng)比賽中,小明投籃命中率超過0.6的場(chǎng)次有5場(chǎng),分別是主場(chǎng)2,主場(chǎng)3,主場(chǎng)5,客場(chǎng)2,客場(chǎng)4.所以在隨機(jī)選擇的一場(chǎng)比賽中,小明的投籃命中率超過0.6的概率是0.5.
(2)記事件A為“在隨機(jī)選擇的一場(chǎng)主場(chǎng)比賽中小明的投籃命中率超過0.6”,事件B為“在隨機(jī)選擇的一場(chǎng)客場(chǎng)比賽中小明的投籃命中率超過0.6”,事件C為“在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)中,小明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6”
則,A,B獨(dú)立.
根據(jù)投籃統(tǒng)計(jì)數(shù)據(jù),
.
所以,在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)中,小明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點(diǎn)在軸上,虛軸長為4,且與雙曲線有相同漸近線.
(1)求雙曲線的方程.
(2)過點(diǎn)的直線與雙曲線的異支相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f().
(Ⅰ)求實(shí)數(shù)m,n的值,并用定義證明f(x)在(﹣1,1)上是增函數(shù);
(Ⅱ)設(shè)函數(shù)g(x)是定義在(﹣1,1)上的偶函數(shù),當(dāng)x∈[0,1)時(shí),g(x)=f(x),求函數(shù)g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),點(diǎn),直線過點(diǎn)且與曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,,為棱上一點(diǎn)(不包括端點(diǎn)),且滿足.
(1)求證:平面平面;
(2)為的中點(diǎn),求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,隨著中國第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬臺(tái),其總成本為,其中固定成本為800萬元,并且每生產(chǎn)1萬臺(tái)的生產(chǎn)成本為1000萬元(總成本=固定成本+生產(chǎn)成本),銷售收入萬元滿足
(1)將利潤表示為產(chǎn)量萬臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:
出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;
(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;
(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面幾種推理是合情推理的是( )
(1)由圓的性質(zhì)類比出球的性質(zhì)
(2)由求出,猜測(cè)出
(3)M,N是平面內(nèi)兩定點(diǎn),動(dòng)點(diǎn)滿足,得點(diǎn)的軌跡是橢圓。
(4)由三角形的內(nèi)角和是,四邊形內(nèi)角和是,五邊形的內(nèi)角和是,由此得凸多邊形的內(nèi)角和是
結(jié)論正確的是( )
A. (1)(2)B. (2)(3)C. (1)(2)(4)D. (1)(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美,定義:能夠?qū)A的周長和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”,則下列有關(guān)說法中:
①對(duì)于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,都不能為偶函數(shù);
②函數(shù)是圓的一個(gè)太極函數(shù);
③直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù);
④若函數(shù)是圓的太極函數(shù),則
所有正確的是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com