按照如圖的程序運(yùn)行,已知輸入x的值為2+log23,則輸出y的值為( 。
A、7B、11C、12D、24
考點(diǎn):程序框圖
專(zhuān)題:計(jì)算題,算法和程序框圖
分析:算法的功能是求y=
2x        x≥4
2x+1     x<4
的值,根據(jù)x的值為2+log23<4,代入計(jì)算可得答案.
解答: 解:由程序框圖知:算法的功能是求y=
2x        x≥4
2x+1     x<4
的值,
∵x=2+log23<2+log24=4,
∴y=22+log23+1=23•3=24.
故選:D.
點(diǎn)評(píng):本題考查了選擇結(jié)構(gòu)的程序框圖,根據(jù)框圖流程判斷算法的功能是解答此類(lèi)問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的圖象如圖所示,則f(
π
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),動(dòng)點(diǎn)P(a,b)滿足0≤
OP
OA
≤2且0≤
OP
OB
≤2,則點(diǎn)P到點(diǎn)C的距離大于
1
4
的概率為(  )
A、1-
5
64
π
B、
5
64
π
C、1-
π
16
D、
π
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過(guò)F2作直線PQ的垂線,垂足為B,則|OA|與|OB|的長(zhǎng)度依次為( 。
A、a,a
B、a,
a2+b2
C、
a
2
,
3a
2
D、
a
2
,a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x<0},B={x|x≤-1或x>1},則A∩(∁RB)=(  )
A、{x|0<x<1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的雙曲線,其右焦點(diǎn)為F(3,0),且F到其中一條漸近線的距離為
5
,則該雙曲線的方程為( 。
A、
x2
4
-
y2
5
=1
B、
x2
4
-
y2
5
=1
C、
x2
2
-
y2
5
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的方程為y2=2px(p>0),點(diǎn)R(1,2)在拋物線C上.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)點(diǎn)Q(l,1)作直線交拋物線C于不同于R的兩點(diǎn)A,B,若直線AR,BR分別交直線l:y=2x+2于M,N兩點(diǎn),求|MN|最小時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知離心率為
6
3
的橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
與圓C:x2+(y-3)2=4交于A,B兩點(diǎn),且∠ACB=120°,C在AB上方,如圖所示,
(1)求橢圓E的方程;
(2)是否存在過(guò)交點(diǎn)B,斜率存在且不為0的直線l,使得該直線截圓C和橢圓E所得的弦長(zhǎng)相等?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某停車(chē)場(chǎng)臨時(shí)停車(chē)按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每輛汽車(chē)一次停車(chē)不超過(guò)1小時(shí)收費(fèi)6元,超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)8元(不足1小時(shí)按1小時(shí)計(jì)算).現(xiàn)有甲、乙兩人在該場(chǎng)地停車(chē),兩人停車(chē)都不超過(guò)4小時(shí).
(1)若甲停車(chē)1小時(shí)以上且不超過(guò)2小時(shí)的概率為
1
3
,停車(chē)付費(fèi)多于14元的概率為
5
12
,求甲停車(chē)付費(fèi)6元的概率;
(2)若甲、乙兩人每人停車(chē)的時(shí)長(zhǎng)在每個(gè)時(shí)段的可能性相同,求甲乙二人停車(chē)付費(fèi)之和為28元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案