已知向量
a
=(
3
,1),
b
=(-2
3
,k),求
(1)k為何值時,
a
b
?
(2)k為何值時,
a
b
考點(diǎn):數(shù)量積判斷兩個平面向量的垂直關(guān)系,平行向量與共線向量
專題:平面向量及應(yīng)用
分析:(1)由
a
b
?x1y2-x2y1=0,求出k的值;
(2)由
a
b
?x1x2+y1y2=0,求出的值.
解答: 解:(1)∵向量
a
=(
3
,1),
b
=(-2
3
,k),
3
k-1×(-2
3
)=0
,
解得k=-2;
∴當(dāng)k=-2時,
a
b
;
(2)∵向量
a
=(
3
,1),
b
=(-2
3
,k),
3
(-2
3
)+1×k=0

解得k=6;
∴當(dāng)k=6時,
a
b
點(diǎn)評:本題考查了利用平面向量的數(shù)量積判定向量平行與垂直的問題,解題時應(yīng)利用坐標(biāo)運(yùn)算表示向量的數(shù)量積,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式x2•(x-1)<0的解集是( 。
A、{x|x>1}
B、{x|x<1}
C、{x|0<x<1}
D、{x|x<1,且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[1,3]上任取一數(shù),則這個數(shù)大于等于1.5的概率為( 。
A、0.25B、0.5
C、0.6D、0.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
AC
-
DC
+
DA
=(  )
A、
AD
B、
DA
C、
DC
D、
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是邊長為2的菱形,AA1=2
2
,∠BAD=∠A1AC=60°,點(diǎn)M是棱AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BMD;
(Ⅱ)求點(diǎn)C1到平面BDD1B1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(f(x),1),向量
b
=(2x+|x|-1,2|x|),且滿足
a
b

(1)若f(x)=
15
4
,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[2,4]恒成立,求實(shí)數(shù)m的取值范圍.
(3)若2tf(2t)+mf(t)≥0對于t∈[1,2]有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為1.
(Ⅰ)求四面體D1-AB1C的左視圖的面積;
(Ⅱ)求四面體D1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年第三季度,國家電網(wǎng)決定對城鎮(zhèn)居民民用電計(jì)費(fèi)標(biāo)準(zhǔn)做出調(diào)整,并根據(jù)用電情況將居民分為三類:第一類的用電區(qū)間在(0,170],第二類在(170,260],第三類在(260,+∞)(單位:千瓦時).某小區(qū)共有1000戶居民,現(xiàn)對他們的用電情況進(jìn)行調(diào)查,得到頻率分布直方圖如圖所示.
(1)求該小區(qū)居民用電量的中位數(shù)與平均數(shù);
(2)利用分層抽樣的方法從該小區(qū)內(nèi)選出5戶居民代表,若從該5戶居民代表中任選兩戶居民,求這兩戶居民用電資費(fèi)屬于不同類型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosα=-
4
5
,α為第二象限角.
(1)求sin(α+
π
4
)的值.        
(2)求cos2α的值.

查看答案和解析>>

同步練習(xí)冊答案