已知某山區(qū)小學(xué)有100名四年級學(xué)生,將全體四年級學(xué)生隨機(jī)按00~99編號,并且按編號順序平均分成10組,現(xiàn)要從中抽取10名學(xué)生,各組內(nèi)抽取的編號依次增加10進(jìn)行系統(tǒng)抽樣.
(1)若抽出的一個(gè)號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學(xué)生的號碼;
(2)分別統(tǒng)計(jì)這10名學(xué)生的數(shù)學(xué)成績,獲得成績數(shù)據(jù)的莖葉圖如圖所示,求這樣本的方差;
(3)在(2)的條件下,從這10名學(xué)生中隨機(jī)抽取兩名,記ξ為成績大于75分的人數(shù),求ξ的分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,莖葉圖
專題:概率與統(tǒng)計(jì)
分析:(1)由題意,抽出號碼為22的組數(shù)為第3組.因?yàn)?+10×(3-1)=22,所以第1組抽出的號碼應(yīng)該為02,由此能求出抽出的10名學(xué)生的號碼.
(2)由莖葉圖能求出這10名學(xué)生的平均成績和樣本方差.
(3)ξ的取值為0,1,2.由超幾何分布能求出ξ的分布列及數(shù)學(xué)期望.
解答: 解:(1)由題意,抽出號碼為22的組數(shù)為第3組.…(1分)
因?yàn)?+10×(3-1)=22,所以第1組抽出的號碼應(yīng)該為02,
抽出的10名學(xué)生的號碼依次分別為:02,12,22,32,42,52,62,72,82,92.…(2分)
(2)這10名學(xué)生的平均成績?yōu)椋?br />
.
x
=
1
10
×(81+70+73+76+78+79+62+65+67+59)=71,…(4分)
故樣本方差為:S2=
1
10
(102+12+22+52+72+82+92+62+42+122)=52.…(6分)
(3)ξ的取值為0,1,2.由超幾何分布得:…(7分)
P(ξ=0)=
C
2
6
C
2
10
=
1
3
,…(8分)
P(ξ=1)=
C
1
4
C
1
6
C
2
10
=
8
15
,…(9分)
P(ξ=2)=
C
2
4
C
2
10
=
2
15
.…(10分)
所以,隨機(jī)變量ξ的分布列為:
ξ012
P
1
3
8
15
2
15
…(11分)
∴Eξ=
1
3
+1×
8
15
+2×
2
15
=
4
5
.…(12分)
點(diǎn)評:本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型之一.解題時(shí)要注意莖葉圖的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

異面直線a,b分別在平面α、β內(nèi),α∩β=l,則l與a、b的位置關(guān)系是( 。
A、與a,b均相交
B、至少與a,b中一條相交
C、與a,b均不相交
D、至多與a,b中一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-y2=1(a>0)與直線l:x+y=1相交于兩個(gè)不同點(diǎn),則雙曲線的離心率e的取值范圍為(  )
A、(
6
2
,
2
)∪(
2
,+∞)
B、(
3
2
2
)∪(
2
,+∞)
C、(
2
,+∞)
D、(
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某化妝品生產(chǎn)公司計(jì)劃在鄭州的“五一社區(qū)”舉行為期三天的“健康使用化妝品知識講座”.每位有興趣的同志可以在期間的任意一天參加任意一個(gè)講座,也可以放棄任何一個(gè)講座.規(guī)定:各個(gè)講座達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座.若各個(gè)講座各天滿座的概率如下:
洗發(fā)水講座洗面奶講座護(hù)膚霜講座活顏營養(yǎng)講座指油使用講座
第一天
1
4
1
4
1
4
1
4
1
2
第二天
1
2
1
2
1
2
1
2
2
3
第三天
1
3
1
3
1
3
1
3
2
3
(1)求指油使用講座三天都不滿座的概率;
(2)設(shè)第二天滿座的講座數(shù)目為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人拋擲一枚硬幣,出現(xiàn)正面、反面的概率均為
1
2
.構(gòu)造數(shù)列{an},使得an=
1當(dāng)?shù)趎次出現(xiàn)正面時(shí)
-1當(dāng)?shù)趎次出現(xiàn)反面時(shí)
,記Sn=a1+a2+a3+…+an(n∈N*).
(1)求S4=2的概率.
(2)若前兩次均出現(xiàn)正面,求2≤S6≤6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,已知點(diǎn)M、N分別是A1A、A1B1的中點(diǎn),AC∩BD=P.
(Ⅰ)求證:MN∥平面PB1C;
(Ⅱ)求異面直線MN與PB1的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)科競賽的預(yù)賽考試分為一試和加試兩部分測試,且規(guī)定只有一試考試達(dá)標(biāo)著才可以進(jìn)入加試考試,一試考試和
加試考試都達(dá)標(biāo)才算優(yōu)勝者,從而進(jìn)入決賽,一試試卷包括三個(gè)獨(dú)立的必做題目,加試包括兩個(gè)獨(dú)立的必做題目,若一試考試至少答對兩個(gè)問題就認(rèn)定為達(dá)標(biāo),加試需兩個(gè)題目都答對才算達(dá)標(biāo),假設(shè)甲同學(xué)一試考試中答對每個(gè)題的概率均為
2
3
,加試考試中答對每個(gè)題的概率都為
1
2
,且各題答題情況均互不影響.
(1)求甲同學(xué)成為優(yōu)勝者,順利進(jìn)入決賽的概率; 
(2)設(shè)甲同學(xué)解答的題目的個(gè)數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知長方體ABCD-EFGH中,AB=
3
,AD=
3
,AE=1,
(1)求BC和EG所成的角是多少度?
(2)求AE和BG所成的角是多少度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列直角坐標(biāo)方程和極坐標(biāo)方程互化
(1)y2=4x;   
(2)y2+x2-2x-1=0;
(3)2ρcosθ-ρsinθ=4;    
(4)ρ=
1
2-cosθ

查看答案和解析>>

同步練習(xí)冊答案