分析 根據(jù)三視圖,可得該三棱錐為如圖的三棱錐A-BCD,其中底面△BCD中,CD⊥BC,且側(cè)面ABC與底面ABC互相垂直,分別求出S△ADB,S△ADC,S△CBD,S△ACB,問(wèn)題得以解決.
解答 解:根據(jù)題意,還原出如圖的三棱錐A-BCD
底面Rt△BCD中,BC⊥CD,且BC=5,CD=4
側(cè)面△ABC中,高AE⊥BC于E,且AE=4,BE=2,CE=3
側(cè)面△ACD中,AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5
∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AE⊥BC
∴AE⊥平面BCD,結(jié)合CD?平面BCD,得AE⊥CD
∵BC⊥CD,AE∩BC=E
∴CD⊥平面ABC,結(jié)合AC?平面ABC,得CD⊥AC
因此,△ADB中,AB=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,BD=$\sqrt{{5}^{2}+{4}^{2}}$=$\sqrt{41}$,AD=$\sqrt{{5}^{2}+{4}^{2}}$=$\sqrt{41}$,
設(shè)△ADB中AB邊上的高為h,則h=$\sqrt{41-5}$=6,
由三角形面積公式,得S△ADB=$\frac{1}{2}$×2$\sqrt{5}$×6=6$\sqrt{5}$
又∵S△ACB=×5×4=10,S△ADC=S△CBD=×4×5=10
∴三棱錐的表面積是S表=S△ADB+S△ADC+S△CBD+S△ACB=$30+6\sqrt{5}$
點(diǎn)評(píng) 本題給出三棱錐的三視圖,求該三棱錐的表面積,著重考查了三視圖的理解、線面垂直與面面垂直的判定與性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m>0 | B. | 0<m<$\frac{3}{2}$ | C. | -1<m<3 | D. | -<m<$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com