8.已知集合M={y|y=x2-1,x∈R},P={y|y=2x-1,x∈R},那么集合M與P關(guān)系是( 。
A.M=PB.M?PC.M?PD.P?M

分析 化簡得:M=[-1,+∞),而集合P=[0,+∞),由此即可得到集合P與集合M的包含關(guān)系.

解答 解:∵集合M={y|y=x2-1,x∈R}=[-1,+∞),P={y|y=2x-1,x∈R}=(-1,+∞),
∴P?M.
故選:D.

點(diǎn)評(píng) 本題給出兩個(gè)集合是函數(shù)的值域,求它們之間的包含關(guān)系,著重考查了函數(shù)的基本概念和集合包含關(guān)系的判斷等等知識(shí)點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知在△ABC中,c=10,A=45°,C=30°,則a的值為( 。
A.10$\sqrt{2}$B.10$\sqrt{3}$C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{1-{{log}_2}x}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(0,2)C.(2,+∞)D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={x∈R|y=lg(4-x2)},則M∩N*=(  )
A.(-1,1]B.{1}C.(0,2)D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時(shí)間的情況,從全校學(xué)生中抽取120人,統(tǒng)計(jì)他們平均每天在家的時(shí)間(在家時(shí)間在4小時(shí)以上的就認(rèn)為具有“宅”屬性,否則就認(rèn)為不具有“宅”屬性)
具有“宅”屬性不具有“宅”屬性總計(jì)
男生205070
女生104050
總計(jì)3090120
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計(jì)算判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“是否具有‘宅’屬性與性別有關(guān)?”
(2)采用分層抽樣的方法從具有“宅”屬性的學(xué)生里抽取一個(gè)6人的樣本,其中男生和女生各多少人?從6人中隨機(jī)選取3人做進(jìn)一步的調(diào)查,求選取的3人至少有1名女生的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0245.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=ax+b,且f(3)=7,f(5)=-1,那么f(0)=19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\sqrt{x-1}$+$\frac{1}{x-1}$的定義域?yàn)閧x|x>1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法錯(cuò)誤的是(  )
A.命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
B.如果命題“?p”與命題“p∨q”都是真命題,則命題q一定是真命題
C.若命題:?x0∈R,x02-x0+1<0,則?p:?x∈R,x2-x+1≥0
D.“sinθ=$\frac{1}{2}$”是“θ=$\frac{π}{6}$”的充分必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,4,5,6,7},則A∩(∁UB)=( 。
A.{1,2}B.{3,4}C.{5,6,7}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案