【題目】盒子有大小和形狀完全相同的個紅球、個白球和個黑球,從中不放回地依次抽取個球.
(1)求在第次抽到紅球的條件下,第次又抽到紅球的概率;
(2)若抽到個紅球記分,抽到個白球記分,抽到個黑球記分,設(shè)得分為隨機(jī)變量,求隨機(jī)變量的分布列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】支付寶和微信支付是目前市場占有率較高的支付方式,某第三方調(diào)研機(jī)構(gòu)對使用這兩種支付方式的人數(shù)作了對比.從全國隨機(jī)抽取了100個地區(qū)作為研究樣本,計算了各個地區(qū)樣本的使用人數(shù),其頻率分布直方圖如圖.
(1)記A表示事件“微信支付人數(shù)低于50千人”,估計A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為支付人數(shù)與支付方式有關(guān);
支付人數(shù)<50千人 | 支付人數(shù)≥50千人 | 總計 | |
微信支付 | |||
支付寶支付 | |||
總計 |
(3)根據(jù)支付人數(shù)的頻率分布直方圖,對兩種支付方式的優(yōu)劣進(jìn)行比較.
附:
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時,每年的生產(chǎn)成本萬元與年產(chǎn)量噸之間的關(guān)系可可近似地表示為.
(1)若每年的生產(chǎn)總成本不超過2000萬元,求年產(chǎn)量的取值范圍;
(2)求年產(chǎn)量為多少噸時,每噸的平均成本最低,并求每噸的最低成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖: PA⊥平面ABC,∠ACB=90°且PA=AC=BC=,則異面直線PB與AC所成角的正切值等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=.
(1)化簡f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中,,且,沿翻折使得平面平面,得到四棱錐,若點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,D,E分別為AB,AC的中點(diǎn),O為DE的中點(diǎn),,BC=4.將△ADE沿DE折起到△的位置,使得平面平面BCED, F為A1C的中點(diǎn),如圖2.
(1)求證EF∥平面;
(2)求點(diǎn)C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè);
(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點(diǎn)C、F分別在半徑OB、OA上,設(shè);
試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com