分析 利用條件a+b+c+d=1,構(gòu)造柯西不等式(a+b+c+d)2≤(12+12+12+12)(a2+b2+c2+d2)進(jìn)行解題即可.
解答 解:由柯西不等式得(a+b+c+d)2≤(12+12+12+12)(a2+b2+c2+d2),
∵a+b+c+d=1,
∴1≤4(a2+b2+c2+d2),
∴a2+b2+c2+d2≥$\frac{1}{4}$,
當(dāng)且僅當(dāng)a=b=c=d取等號(hào),
則a2+b2+c2+d2的最小值是$\frac{1}{4}$.
點(diǎn)評(píng) 本題主要考查了函數(shù)的最值,以及柯西不等式的應(yīng)用,解題的關(guān)鍵是利用(a+b+c+d)2≤(12+12+12+12)(a2+b2+c2+d2),進(jìn)行解題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{40}{243}$ | B. | $\frac{80}{243}$ | C. | $\frac{110}{243}$ | D. | $\frac{20}{243}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com