12.方程2x-1+x-5=0的解所在的區(qū)間是(  )
A.(0,1)B.(2,3)C.(1,2)D.(3,4)

分析 方程2x-1+x=5的解所在的區(qū)間就是函數(shù)f(x)=2x-1+x-5的零點所在的區(qū)間,根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)的零點所在的區(qū)間,由此可得結(jié)論.

解答 解:令f(x)=2x-1+x-5,則 方程2x-1+x=5的解所在的區(qū)間就是函數(shù)f(x)=2x-1+x-5的零點所在的區(qū)間.
由于f(2)=4-5=-1,f(3)=4+3-5=2>0,
根據(jù)函數(shù)零點的判定定理可得函數(shù)f(x)=2x-1+x-5的零點所在的區(qū)間為(2,3),
故選 B.

點評 本題主要考查函數(shù)的零點的判定定理的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的左焦點為(-2,0),離心率為$\frac{1}{2}$,則C的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}=1$C.$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)在等差數(shù)列{an}中,已知a3=5,S3=21,求a8與S7的值.
(2)在公比為2的等比數(shù)列{an}中,a3•a11=16,求a6的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,已知角$C=\frac{π}{3}$,a2+b2=4(a+b)-8,則邊c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點$(\sqrt{2},2)$,則f(1-x)的單調(diào)增區(qū)間為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},則(∁UA)∩B=( 。
A.{2,4}B.{3}C.{2,4,6}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四面體P-ABC,其中△ABC是邊長為6的等邊三角形,PA⊥平面ABC,PA=4,則四面體P-ABC外接球的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,向量$\overrightarrow{a}$,$\overrightarrow$的位置如圖所示,已知|$\overrightarrow{a}$|=|$\overrightarrow{OA}$|=4,|$\overrightarrow$|=|$\overrightarrow{AB}$|=3,且∠AOx=45°,∠OAB=105°,請分別求出向量$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合M={m|-3<m<2},N={n|-1≤n≤3,n∈Z},則M∩N={-1,0,1}.

查看答案和解析>>

同步練習(xí)冊答案