【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過(guò)定點(diǎn),并求出點(diǎn)的坐標(biāo).
【答案】(1) 拋物線的方程為;(2) 直線過(guò)定點(diǎn),證明見(jiàn)解析.
【解析】試題分析:(1)由,得兩點(diǎn)所在的直線方程為,進(jìn)而根據(jù)長(zhǎng)度求得;
(2)設(shè)直線的方程為, 與拋物線聯(lián)立得,由得,進(jìn)而利用韋達(dá)定理求解即可.
試題解析:
(1)由已知, ,則兩點(diǎn)所在的直線方程為
則,故
∴拋物線的方程為.
(2)由題意,直線不與軸垂直,設(shè)直線的方程為,
.
聯(lián)立消去,得.
∴, , ,
∵,∴
又,
∴
∴
解得或
而,∴(此時(shí))
∴直線的方程為,
故直線過(guò)軸上一定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)幾何體的平面展開(kāi)圖,其中四邊形ABCD為正方形,△PDC, △PBC, △PAB, △PDA為全等的等邊三角形,E、F分別為PA、PD的中點(diǎn),在此幾何體中,下列結(jié)論中錯(cuò)誤的為 ( )
A. 平面BCD⊥平面PAD B. 直線BE與直線AF是異面直線
C. 直線BE與直線CF共面 D. 面PAD與面PBC的交線與BC平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過(guò)拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.
(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;
(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一網(wǎng)站營(yíng)銷部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:
若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.
(1)確定的值,并補(bǔ)全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f( )=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f( )=﹣ ,α∈( ,π),求sin(α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過(guò)拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com