已知函數(shù),點(diǎn)A、B分別是函數(shù)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)設(shè)點(diǎn)A、B分別在角、的終邊上,求tan()的值.
(1);(2).
解析試題分析:(1)根據(jù)的取值范圍得到的取值范圍,然后根據(jù)角的取值范圍可以得到在該范圍上的圖像,結(jié)合三角函數(shù)的圖像性質(zhì)判斷出最高點(diǎn)最低點(diǎn),從而可以得到A,B的坐標(biāo),進(jìn)而求得向量的數(shù)量積;(2)首先根據(jù)任意角的三角函數(shù)的定義可以求得與,由倍角公式可以得到,再利用兩角差的正切公式求的值.
(1)∵, ∴, 1分
∴. 2分
當(dāng),即時(shí),,取得最大值2;
當(dāng),即時(shí),,取得最小值-1.
因此,點(diǎn)A、B的坐標(biāo)分別是、. 4分
∴. 5分
(2)∵點(diǎn)、分別在角的終邊上,
∴,, 7分
∴, 8分
∴. 10分
考點(diǎn):1、三角函數(shù)的最值;2、任意角的三角函數(shù);3、兩角差與倍角的正切公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,,),的部分圖像如圖所示,、分別為該圖像的最高點(diǎn)和最低點(diǎn),點(diǎn)的坐標(biāo)為.
(1)求的最小正周期及的值;
(2)若點(diǎn)的坐標(biāo)為,,求的值和的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,角和角的終邊分別與單位圓交于,兩點(diǎn),(其中為第一象限點(diǎn),為第二象限點(diǎn))
(1)若點(diǎn)的橫坐標(biāo)是,點(diǎn)的縱坐標(biāo)是,求的值;
(2)若, 求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)相鄰兩個(gè)對(duì)稱軸之間的距離是,且滿足,
(1)求的單調(diào)遞減區(qū)間;
(2)在鈍角△ABC中,a、b、c分別為角A、B、C的對(duì)邊,sinB=,求△ABC的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(,)為偶函數(shù),且函數(shù)圖象的兩相鄰對(duì)稱軸間的距離為.
(1)求的值;
(2)將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn),,其中.
(1)當(dāng)時(shí),求向量的坐標(biāo);
(2)當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△中,是角對(duì)應(yīng)的邊,向量,,且.
(1)求角;
(2)函數(shù)的相鄰兩個(gè)極值的橫坐標(biāo)分別為、,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com