10.集合M={x|x≤4且x∈N},P={x|x=ab,a、b∈M且a≠b},P的真子集個數(shù)是( 。
A.63B.127C.217-1D.220-1

分析 利用已知條件求出集合P,然后可得真子集個數(shù).

解答 解:∵M(jìn)={x|x≤4且x∈N},P={x|x=ab,a、b∈M且a≠b},
∴P={0,2,3,4,6,8,12}.
∴集合P的真子集個數(shù)為:27-1=127.
故選:B.

點(diǎn)評 本題考查集合的求法,真子集的個數(shù)問題,較簡單,若N中有n個元素,則其所有子集的數(shù)目為2n

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)y=f(x)在R上是減函數(shù),其中f(2a+3)<f(a+1),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=-x2+2|x|+3的單調(diào)區(qū)間為增區(qū)間為,(-∞,-1],[0,1],減區(qū)間為[-1,0],[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$的導(dǎo)數(shù)y′=( 。
A.$\frac{4x}{(1-x)^{2}}$B.-$\frac{4x}{(1-x)^{2}}$C.$\frac{2}{(1-x)^{2}}$D.-$\frac{2}{(1-x)^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=x+$\frac{x}$在(1,e)上為單調(diào)函數(shù),則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,1]∪[e2,+∞)B.(-∞,0]∪[e2,+∞)C.(-∞,e2]D.[1,e2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.化簡:$\frac{sin(θ-π)cos(\frac{π}{2}-θ)cos(π-θ)}{sin(θ-\frac{π}{2})sin(-θ-π)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.解方程:$\frac{{x}^{2}-5x}{x+1}+\frac{24(x+1)}{x(x-5)}$+14=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等比數(shù)列{an}中,a1+a4=133,a2+a3=70,則這數(shù)列的公比為$\frac{2}{5}$或$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某市規(guī)定,高中學(xué)生三年在校期間參加不少于80小時的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時間段[75,80),[80,85),[85,90),[90,95),[95,100](單位:小時)進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示.
(1)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時間不少于90小時的學(xué)生人數(shù),并估計從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時間不少于90小時的概率;
(2)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記ξ為3位學(xué)生中參加社區(qū)服務(wù)時間不少于90小時的人數(shù).試求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案