(本小題滿分13分)已知橢圓的中心在原點,焦點在y軸上,離心率為,且
橢圓經(jīng)過圓的圓心C。
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線與橢圓交于A、B兩點,點且|PA|=|PB|,求直線的方程。
(1)由圓C的方程可知:圓心C(1,-2)                 ————2分
設(shè)橢圓的方程為                      
橢圓過圓心C,可得:
,且。
解得:
即橢圓的方程為:                              ————6分
(2)將直線方程與橢圓方程聯(lián)立方程組消元可得:
                                 
設(shè)
法一:設(shè)AB中點M
其中,                    ————8分
,則有:,解得:                  ————10分
,顯然滿足題意。
故直線的方程為: 或 或           ————13分
法二:由,代入可得方程:可解出
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分) 已知拋物線C的頂點在原點, 焦點為F(0,1).
(1) 求拋物線C的方程;
(2)在拋物線C上是否存在點P, 使得過點P
的直線交C于另一點Q,滿足PFQF, 且
PQ與C在點P處的切線垂直.若存在,求出
P的坐標(biāo); 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線,過能否作一條直線,與雙曲線交于兩點,且點是線段中點?若能,求出的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的右焦點重合,則p的值為(  )           
        B         C         D  4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,且橢圓過點.
(1)求橢圓的方程;
(2)若為橢圓上的動點,為橢圓的右焦點,以為圓心,長為半徑作圓,過點作圓的兩條切線,(為切點),求點的坐標(biāo),使得四邊形的面積最大.]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點,直線:,點在直線上移動,是線段軸的交點,
(I)求動點的軌跡的方程;
(II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當(dāng)運動時弦長是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若雙曲線的離心率為2,則等于__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的離心率為的最小值為     

查看答案和解析>>

同步練習(xí)冊答案