【題目】某工廠今年初用128萬元購進一臺新的設備,并立即投入使用,計劃第一年維修、保養(yǎng)費用8萬元,從第二年開始,每年的維修、保養(yǎng)修費用比上一年增加4萬元,該設備使用后,每年的總收入為54萬元,設使用x年后設備的盈利總額y萬元.

1)寫出yx之間的函數(shù)關(guān)系式;

2)從第幾年開始,該設備開始盈利?

3)使用若干年后,對設備的處理有兩種方案:①年平均盈利額達到最大值時,以42萬元價格賣掉該設備;②盈利額達到最大值時,以10萬元價格賣掉該設備.問哪種方案處理較為合理?請說明理由.

【答案】(1)(萬元);(2)第4年該設備開始盈利;(3)選擇方案①處理較為合理,理由見解析

【解析】

1)根據(jù)題意總收入去掉每年的維修費之和及購置費用即為盈利,寫出函數(shù)關(guān)系即可(2)由(1),令,解一元二次不等式求解即可(3)分別計算兩種方案,根據(jù)均值不等式及二次函數(shù)求最值,比較大小即可.

1)由題意使用x年的維修,保養(yǎng)費用為(萬元)

所以盈利總額(萬元).

2)由,得,即,

解得,

,得

答:第4年該設備開始盈利.

3)方案①年平均盈利,

當且僅當,即時取“=”,

所以方案①總利潤為(萬元),

方案②,,

所以方案②總利潤為(萬元),

答:選擇方案①處理較為合理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足2an=2+Sn

1)求證:數(shù)列{an}是等比數(shù)列;

2)設bn=log2a2n+1,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點Pt,t1),tR,點E是圓上的動點,點F是圓上的動點,則|PF||PE|的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知Sn為等差數(shù)列{an}的前n項和,a42S618

1)求an;

2)設Tn|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點是拋物線上異于原點的一點,過點作斜率為的兩條直線分別交、兩點(、、三點互不相同).

1)已知點,求的最小值;

2)若,直線的斜率是,求的值;

3)若,當時,點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù),以坐標原點為極點,x軸的正半軸為極軸建建立極坐標系,曲線C的極坐標方程為

求曲線C的直角坐標方程與直線l的極坐標方程;

若直線與曲線C交于點不同于原點,與直線l交于點B,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OBOC兩兩垂直,且OA=1,OB=OC=2EOC的中點.

1)求異面直線BEAC所成角的余弦值;

2)求直線BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l和平面,若直線l在空間中任意放置,則在平面內(nèi)總有直線

A.垂直B.平行C.異面D.相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點,點,為拋物線上一點,且不在直線上,則周長取最小值時,線段的長為( )

A. 1B. C. 5D.

查看答案和解析>>

同步練習冊答案