用坐標(biāo)法證明平面內(nèi)任意一點到矩形的一對對角頂點的距離平方和等于這個點到另一對對角頂點的距離平方和.?

 

證明:如上圖所示,取坐標(biāo)軸和矩形邊平行建立坐標(biāo)系,設(shè)P(x,y)為任意點,矩形四個頂點為A(x1,y1)、C(x2,y2)、B(x1,y2)、D(x2,y1),則有

|PA|2+|PC|2=(x1-x)2+(y1-y)2+(x2-x)2+(y2-y)2,

|PB|2+|PD|2=(x1-x)2+(y2-y)2+(x2-x)2+(y1-y)2.

∴|PA|2+|PC|2=|PB|2+|PD|2.?

溫馨提示:在上述證明中,若選取矩形的鄰邊AB、BC所在直線分別為y軸和x軸,那么矩形的四個頂點坐標(biāo)為A(0,y1)、B(0,0)、C(x1,0)、D(x1,y1),這樣數(shù)據(jù)更簡單,運算更簡便了.因此用坐標(biāo)法解題,坐標(biāo)系選取得適當(dāng),可以簡化運算過程.?


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:044

用坐標(biāo)法證明平面內(nèi)任意一點到矩形的一對對角頂點的距離平方和等于這個點到另一對對角頂點的距離平方和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:047

用坐標(biāo)法證明平面內(nèi)任意一點到矩形的一對對角頂點的距離平方和等于這個點到另一對對角頂點的距離平方和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用坐標(biāo)法證明平面內(nèi)任意一點到矩形的一對對角頂點的距離平方和等于這個點到另一對對角頂點的距離平方和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用坐標(biāo)法證明平面內(nèi)任意一點到矩形的一對對角頂點的距離平方和等于這個點到另一對對角頂點的距離平方和.

查看答案和解析>>

同步練習(xí)冊答案