(1)若a、b、c都是正數(shù),且a+b+c=1,求證:(1-a)(1-b)(1-c)≥8abc.
(2)已知a,b,c都是正數(shù),且a,b,c成等比數(shù)列,求證:a2+b2+c2>(a-b+c)2
考點(diǎn):不等式的證明,等比數(shù)列的性質(zhì)
專(zhuān)題:證明題,不等式的解法及應(yīng)用
分析:(1)(1-a)(1-b)(1-c)=(b+c)( a+c)( a+b),利用基本不等式,可得結(jié)論;
(2)證明b2=ac,a+c>b,左-右=2(ab+bc-ac),即可得出結(jié)論.
解答: 證明:(1)∵a、b、c都是正數(shù),且a+b+c=1,
∴(1-a)(1-b)(1-c)=(b+c)( a+c)( a+b)≥2
bc
•2
ac
•2
ab
=8abc.
(2)∵a,b,c成等比數(shù)列,b2=ac
又∵a,b,c都是正數(shù),∴0<b=
ac
a+c
2
<a+c
,∴a+c>b
∴左-右=2(ab+bc-ac)=2(ab+bc-b2)=2b(a+c-b)>0
∴a2+b2+c2>(a-b+c)2
點(diǎn)評(píng):本題考查不等式的證明,考查基本不等式的運(yùn)用,考查作差法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,關(guān)于x的一元二次方程7x2-(a+13)x+a2-a-2=0有兩實(shí)數(shù)根x1,x2,且0<x1<1<x2<2.
(1)求a的取值范圍;
(2)比較a3與a2-a+1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,?ABCD中,
AB
=
a
AD
=
b
,
(1)當(dāng)
a
、
b
滿足什么條件時(shí),表示
a
+
b
a
-
b
的有向線段所在的直線互相垂直?
(2)當(dāng)
a
、
b
滿足什么條件時(shí),|
a
+
b
|=|
a
-
b
|.
(3)
a
+
b
a
-
b
有可能為相等向量嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-x
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式af(x)≥x-
1
2
x2
在x∈(0,+∞)內(nèi)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)n∈N*,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),B(1,-1)和拋物線C:y2=4x,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖
(1)證明:
OM
OP
為定值;
(2)若△POM的面積為
5
2
,求向量
OM
OP
的夾角;
(3)證明直線PQ恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,且∠BAD=60°,AA1=AB1,E為BB1延長(zhǎng)線上的一點(diǎn),D1E⊥面D1AC.
(Ⅰ)求二面角E-AC-D1的大;
(Ⅱ)在D1E上是否存在一點(diǎn)P,使A1P∥面EAC?若存在,求D1P:PE的值,不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)
,
(Ⅰ)求f(x)的最大值及此時(shí)x的值;
(Ⅱ)求此函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,過(guò)點(diǎn)P的直線與⊙O相交于A,B兩點(diǎn).若PA=1,AB=2,PO=3,求⊙O的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U={1,2,3,4,5},A={1,3,5},B={3,4},(∁UA)∩B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案