17.已知數(shù)列{an}滿足${a_1}=\frac{1}{5}$,且當(dāng)n>1,n∈N*時(shí),有$\frac{{{a_{n-1}}}}{a_n}=\frac{{2{a_{n-1}}+1}}{{1-2{a_n}}}$,
(1)求證:數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列;
(2)試問a1•a2是否是數(shù)列{an}中的項(xiàng)?如果是,是第幾項(xiàng);如果不是,請(qǐng)說明理由.

分析 (1)根據(jù)數(shù)列的遞推關(guān)系,利用構(gòu)造法結(jié)合等差數(shù)列即可證明數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列;
(2)先求出數(shù)列的通項(xiàng)公式以及a1•a2的值,然后進(jìn)行判斷即可.

解答 (1)證明:∵當(dāng)n>1,n∈N*時(shí),$\frac{{{a_{n-1}}}}{a_n}=\frac{{2{a_{n-1}}+1}}{{1-2{a_n}}}$,
∴an-1-2anan-1=2anan-1+an,
又∵an≠0,
∴$\frac{1}{a_n}-\frac{1}{{{a_{n-1}}}}=4$,∴數(shù)列$\{\frac{1}{a_n}\}$為等差數(shù)列;
(2)∵${a_1}=\frac{1}{5}$,∴${a_2}=\frac{1}{9}$,
∴$\frac{1}{a_n}=5+4(n-1)=4n+1$,∴${a_n}=\frac{1}{4n+1}$,
又∵${a_1}{a_2}=\frac{1}{45}$,若$\frac{1}{45}=\frac{1}{4n+1}$,得n=11,
∴a1a2是數(shù)列{an}的 第11項(xiàng).

點(diǎn)評(píng) 本題主要考查數(shù)列遞推公式的應(yīng)用,利用構(gòu)造法以及等差數(shù)列的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列{an}中,a1=a,an+an+1=3,記數(shù)列{an}的前n項(xiàng)和為Sn,若Sk=2013,則k=1342.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解下列不等式:
(1)|x2-2x|>3
(2)0<|x-2|+x<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在如圖所示的程序中,若N=5時(shí),則輸出的S等于(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)化簡(jiǎn)$\frac{sin(α+π)cos(π+a)}{{cos(\frac{5π}{2}-α)cos(-α)}}$
(2)求值:($\frac{25}{9}$)0.5+0.1-2+($\frac{64}{27}$)${\;}^{\frac{1}{3}}$+($\sqrt{8}$)${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若$(\sqrt{3}b-c)cosA=acosC$,則cosA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=-3x-1,則f′(x)=( 。
A.0B.3C.-3D.-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等差數(shù)列{an}中,a66<0,a67>0,且a67>|a66|,Sn為數(shù)列{an}的前n項(xiàng)和,則使Sn>0的n的最小值為( 。
A.66B.67C.132D.133

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義域?yàn)镽的奇函數(shù)f(x)的導(dǎo)數(shù)為f′(x),當(dāng)x≠0時(shí),f′(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=-2f(-2),c=ln$\frac{1}{2}$f(ln2),則下列關(guān)于a,b,c的大小關(guān)系正確的是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

同步練習(xí)冊(cè)答案