拋物線y=x2與直線x-y-2=0的最短距離
 
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)拋物線上的任意一點(diǎn)M(m,m2),由點(diǎn)到直線的距離公司可求M到直線x-y-1=0的距離,由二次函數(shù)的性質(zhì)可求M到直線x-y-1=0的最小距離.
解答: 解:設(shè)拋物線上的任意一點(diǎn)M(m,m2
M到直線x-y-2=0的距離d=
|m-m2-2|
2
=
|(m-
1
2
)2+
7
4
|
2

由二次函數(shù)的性質(zhì)可知,當(dāng)m=
1
2
時(shí),最小距離d=
7
2
8

故答案為:
7
2
8
點(diǎn)評:本題考查直線與拋物線的位置關(guān)系的應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用,拋物線的基本性質(zhì)和點(diǎn)到線的距離公式的應(yīng)用,考查綜合運(yùn)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)),直線l經(jīng)過點(diǎn)P(2,2),傾斜角α=
π
3

(1)寫出圓的標(biāo)準(zhǔn)方程和直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為調(diào)查甲乙兩人網(wǎng)站受歡迎的程度,隨機(jī)選取了某個(gè)月1號至8號,統(tǒng)計(jì)這8天內(nèi)每天同一時(shí)間段的點(diǎn)擊量,得到如圖所示的莖葉圖.
(1)根據(jù)莖葉圖寫出甲網(wǎng)站點(diǎn)擊量的中位數(shù);
(2)如果讓你依據(jù)此調(diào)查比較兩個(gè)網(wǎng)站點(diǎn)擊量的大小及穩(wěn)定程度,并在兩個(gè)網(wǎng)站中選擇一個(gè)成為該網(wǎng)站的會員,你會選擇哪一個(gè)?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC中,C=30°,a+b=1,則△ABC面積S的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD,則
AB
CD
+
AC
DB
+
AD
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=32n+2-8n-9,存在m∈N*,使對任意n∈N*,都有m整除f(n),則m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+y2+2ax-2ay=0表示的圓.
①關(guān)于直線y=x對稱;
②關(guān)于直線x+y=0對稱;
③其圓心在x軸上,且過原點(diǎn);
④其圓心在y軸上,且過原點(diǎn).
其中敘述正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體,是將高為2、底面半徑為1的圓柱沿過旋轉(zhuǎn)軸的平面切開后,將其中一半沿切面向右水平平移后形成的封閉體.O1,O2,O2′分別為AB,BC,DE的中點(diǎn),F(xiàn)為弧AB的中點(diǎn),G為弧BC的中點(diǎn).則異面直線AF與GO2′所成的角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a4=2,a6=6,Sn是其前n項(xiàng)和,則S9=
 

查看答案和解析>>

同步練習(xí)冊答案