【題目】已知點(diǎn)為拋物線內(nèi)一定點(diǎn),過作兩條直線交拋物線于,且分別是線段的中點(diǎn).

(1)當(dāng)時(shí),求△的面積的最小值;

(2)若,證明:直線過定點(diǎn),并求定點(diǎn)坐標(biāo)。

【答案】1;(2)詳見解析

【解析】

設(shè)出所在的直線方程,代入拋物線方程,寫出韋達(dá)定理,得出點(diǎn)坐標(biāo),設(shè)出直線的方程,代入拋物線方程,同理得出點(diǎn)坐標(biāo). 1)利用面積公式求得面積的表達(dá)式,并利用基本不等式求得面積的最小值.2)先求得直線的斜率,根據(jù)點(diǎn)斜式求得直線所在直線方程,利用的表達(dá)式進(jìn)行化簡,由此求得定點(diǎn).

所在直線的方程為,代入中,得,設(shè),則有,從而.則.設(shè)所在直線的方程為,同理可得

1, ,故,于是△的面積 ,當(dāng)且僅當(dāng)時(shí)等號成立.所以,△的面積的最小值為.

2,所在直線的方程為,

.又,即,代入上式,得,即 .∵,∴是此方程的一組解,所以直線恒過定點(diǎn)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), R.

1證明:當(dāng)時(shí),函數(shù)是減函數(shù);

2根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由;

3當(dāng),且時(shí),證明:對任意,存在唯一的R,使得,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面平面,,

分別為棱的中點(diǎn).

(1)求證: ;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月1日,我國全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應(yīng)”“猶豫”和“不響應(yīng)”態(tài)度的人數(shù)如下表所示:

響應(yīng)

猶豫

不響應(yīng)

男性青年

500

300

200

女性青年

300

200

300

根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為猶豫與否與性別有關(guān)?請說明理由.

猶豫

不猶豫

總計(jì)

男性青年

女性青年

總計(jì)

1800

參考公式:

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右頂點(diǎn)分別為,直線與雙曲線交于,直線交直線于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)若點(diǎn)的軌跡與矩形的四條邊都相切,探究矩形對角線長是否為定值,若是,求出此值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過定點(diǎn).

1)點(diǎn)在圓上運(yùn)動,求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo).

2)若與圓C相交于兩點(diǎn),線段的中點(diǎn)為,又的交點(diǎn)為,判斷是否為定值.若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義域?yàn)?/span>的函數(shù),若同時(shí)滿足下列三個(gè)條件:① ; 當(dāng),且時(shí),都有 ; 當(dāng),且時(shí),都有, 則稱偏對稱函數(shù).現(xiàn)給出下列三個(gè)函數(shù): ; 則其中是偏對稱函數(shù)的函數(shù)個(gè)數(shù)為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為).

1)分別寫出直線的普通方程與曲線的直角坐標(biāo)方程;

2)已知點(diǎn),直線與曲線相交于兩點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.

(1)求橢圓C的方程;

(2)過點(diǎn)M(1,0)的直線與橢圓C相交于A、B兩點(diǎn),設(shè)點(diǎn)N(3,2),記直線ANBN的斜率分別為k1、k2,求證:k1+k2為定值.

查看答案和解析>>

同步練習(xí)冊答案