【題目】已知各項均為正數(shù)的數(shù)列的前項和為且滿足:

(1)求數(shù)列的通項公式;

(2)設(shè)的值;

(3)是否存在大于2的正整數(shù)使得?若存在,求出所有符合條件的若不存在,請說明理由.

【答案】1;(2;(3)存在,

【解析】

1)利用,求得數(shù)列的通項公式.

2)利用裂項求和法求得,進(jìn)而求得的值.

3)首先假設(shè)存在符合題意的,根據(jù)已知條件列方程組,解方程組求得的值.

1)由,兩式相減并化簡得,由于,所以,所以數(shù)列是首項為,公差為的等差數(shù)列,所以.

2)由(1)得,所以

,所以.

3)存在大于2的正整數(shù)使得.理由如下:

假設(shè)存在大于2的正整數(shù)使得,由(1)得

.由于正整數(shù)均大于,故,且的奇偶性相同.

,解得.因此存在大于2的正整數(shù)使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),為實數(shù)).

1)若為偶函數(shù),求實數(shù)的值;

2)設(shè),求函數(shù)的最小值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,則:(1)球的表面積為__________;(2)若的中點,過點作球的截面,則截面面積的最小值是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點為圓心,1為半徑的圓相切,又知C的一個焦點與P關(guān)于直線對稱.

1)求雙曲線C的方程;

2)設(shè)直線與雙曲線C的左支交于A、B兩點,另一直線經(jīng)過AB的中點,求直線y軸上的截距b的取值范圍;

3)若Q是雙曲線C上的任一點,為雙曲線C的左、右兩個焦點,從的角平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了配合今年上海迪斯尼樂園工作,某單位設(shè)計了統(tǒng)計人數(shù)的數(shù)學(xué)模型,以表示第個時刻進(jìn)入園區(qū)的人數(shù);以表示第個時刻離開園區(qū)的人數(shù).設(shè)定以15分鐘為一個計算單位,上午915分作為第1個計算人數(shù)單位,即;930分作為第2個計算單位,即;依次類推,把一天內(nèi)從上午9點到晚上815分分成45個計算單位(最后結(jié)果四舍五入,精確到整數(shù)).

1)試計算當(dāng)天14點至15點這1小時內(nèi)進(jìn)入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?

2)從1345分(即)開始,有游客離開園區(qū),請你求出這之后的園區(qū)內(nèi)游客總?cè)藬?shù)最多的時刻,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有3167列表格一個,每個小格都只填1個數(shù),從左上角開始,第一行依次為1,2,,67,第二行依次為6869,,134,依次把表格填滿,現(xiàn)將此表格的數(shù)按另一方式填寫,從左上角開始,第一列從上到下依次為1,2,31,第二列從上到下依次為32,33,,62依次把表格填滿,對于上述兩種填法,在同一個小格里兩次填寫的數(shù)相同,這樣的小格在表格中共有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

1)討論在其定義域上的單調(diào)性;

2)設(shè)m,n分別為的極大值和極小值,若S=m-n,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,其中,e是自然對數(shù)的底數(shù).

1)若上存在兩個極值點,求a的取值范圍;

2)當(dāng),設(shè),,若上存在兩個極值點,,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列1、1、21、2、41、2、48、12、48、16、…,其中第一項是,接下來的兩項是、,再接下來的三項是、,以此類推,若且該數(shù)列的前項和為2的整數(shù)冪,則的最小值為(

A.440B.330C.220D.110

查看答案和解析>>

同步練習(xí)冊答案