5.函數(shù)f(x)=ax3+3x2+2,若f'(-1)=-12,則a的值等于-2.

分析 先求出∴f′(x)=3ax2+6x,從而f'(-1)=3a-6=-12,由此能求出a的值.

解答 解:∵函數(shù)f(x)=ax3+3x2+2,
∴f′(x)=3ax2+6x,
∵f'(-1)=-12,
∴f'(-1)=3a-6=-12,
解得a=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,四棱錐P-ABCD的底面為直角梯形,AB⊥AD,CD⊥AD,CD=2AB.點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:BE∥平面PAD;
(Ⅱ)已知平面PCD⊥底面ABCD,且PC=DC.在棱PD上是否存在點(diǎn)F,使CF⊥PA?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)=$\frac{n-g(x)}{m+2g(x)}$是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(-1,1)上有零點(diǎn),求a的取值范圍;
(3)若對(duì)任意的t∈(-4,4),不等式f(6t-3)+f(t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列選項(xiàng)中,說法正確的是( 。
A.若命題“p或q”為真命題,則命題p和命題q均為真命題
B.命題“若am2<bm2,則a<b”的逆命題是真命題
C.命題“若a=-b,則|a|=|b|”的否命題是真命題
D.命題“若$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$為空間的一個(gè)基底,則$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow b+\overrightarrow c,\overrightarrow c+\overrightarrow a}\right\}$構(gòu)成空間的另一個(gè)基底”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,三棱錐P-ABC中,△ABC為等腰直角三角形,AB=BC=2,PA=PB=PC=$\sqrt{6}$.
(1)求證:平面PAC⊥平面ABC;
(2)求平面PBC和平面ABC夾角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.經(jīng)過點(diǎn)A(-1,4)且在x軸上的截距為3的直線方程是( 。
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x-y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若二次函數(shù)f(x)=x2+1的圖象與曲線C:g(x)=aex+1(a>0)存在公共切線,則實(shí)數(shù)a的取值范圍為(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+a4+a5+a6+a7=20,則S9=(  )
A.18B.36C.60D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)0<x<$\frac{π}{2}$,記a=sinx,b=esinx,c=lnsinx,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

同步練習(xí)冊(cè)答案