15.如圖所示,四棱錐P-ABCD的底面為直角梯形,AB⊥AD,CD⊥AD,CD=2AB.點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:BE∥平面PAD;
(Ⅱ)已知平面PCD⊥底面ABCD,且PC=DC.在棱PD上是否存在點(diǎn)F,使CF⊥PA?請(qǐng)說(shuō)明理由.

分析 (1)根據(jù)線(xiàn)面平行的判定定理即可證明:BE∥平面PAD;
(2)棱PD上存在點(diǎn)F為PD的中點(diǎn),使CF⊥PA,利用三垂線(xiàn)定理可得結(jié)論.

解答 (1)證明:取PD中點(diǎn)Q,連結(jié)AQ、EQ.…(1分)
∵E為PC的中點(diǎn),
∴EQ∥CD且EQ=$\frac{1}{2}$CD.…(2分)
又∵AB∥CD且AB=$\frac{1}{2}$CD,
∴EQ∥AB且EQ=AB.…(3分)
∴四邊形ABED是平行四邊形,
∴BE∥AQ.…(4分)
又∵BE?平面PAD,AQ?平面PAD,
∴BE∥平面PAD.…(5分)
(2)解:棱PD上存在點(diǎn)F為PD的中點(diǎn),使CF⊥PA,
∵平面PCD⊥底面ABCD,平面PCD∩底面ABCD=CD,AD⊥CD,
∴AD⊥平面PCD,
∴DP是PA在平面PCD中的射影,
∴PC=DC,PF=DF,
∴CF⊥DP,
∴CF⊥PA.

點(diǎn)評(píng) 本題主要考查空間直線(xiàn)和平面平行或垂直的判斷,要求熟練掌握相應(yīng)的判定定理.考查學(xué)生的推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)相量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$垂直,則實(shí)數(shù)m等于( 。
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.$\frac{9}{10}$D.-$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某同學(xué)為實(shí)現(xiàn)“給定正整數(shù)N,求最小的正整數(shù)i,使得7i>N,”設(shè)計(jì)程序框圖如右,則判斷框中可填入( 。
A.x≤NB.x<NC.x>ND.x≥N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若變量x,y滿(mǎn)足$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+1≥0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=2017x+log2017($\sqrt{{x}^{2}+1}$+x)-2017-x+1,則關(guān)于x的不等式f(2x+1)+f(x+1)>2的解集為( 。
A.(-$\frac{1}{2017}$,+∞)B.(-2017,+∞)C.(-$\frac{2}{3}$,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在[40,100],分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng).按文理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見(jiàn)圖).
(1)填寫(xiě)下面的2×2列聯(lián)表,能否有超過(guò)95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
文科生理科生合計(jì)
獲獎(jiǎng)5
不獲獎(jiǎng)
合計(jì)200
附表及公式:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,則$\frac{y-1}{x+3}$的取值范圍是( 。
A.(-∞,$\frac{1}{5}$]B.[-$\frac{1}{5}$,1]C.(-$\frac{1}{5}$,$\frac{1}{3}$]D.($\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a>b>0,a+b=1,x=-($\frac{1}{a}$)b,y=logab($\frac{1}{a}$+$\frac{1}$),z=logba,則( 。
A.y<xzB.x<z<yC.z<y<xD.x<y<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=ax3+3x2+2,若f'(-1)=-12,則a的值等于-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案