分析 (1)分段作圖;
(2)求出f(3)的值,判斷范圍,進行二次迭代;
(3)求出a2+1的范圍,根據(jù)圖象得出結(jié)論.
解答 解:(1)作出函數(shù)圖象如右圖所示,
(2)∵f(3)=log23,∴0<f(3)<2,
∴f(f(3))=f(log23)=2${\;}^{2-lo{g}_{2}3}$=$\frac{{2}^{2}}{{2}^{lo{g}_{2}3}}$=$\frac{4}{3}$.
(3)由函數(shù)圖象可知f(x)在[1,2]上是減函數(shù),在(2,+∞)上是增函數(shù),
∵a2+1≥1,
∴當(dāng)a2+1=2時,f(a2+1)取得最小值f(2)=1.
點評 本題考查了分段函數(shù)作圖,函數(shù)求值及單調(diào)性,結(jié)合函數(shù)圖象可快速得出結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,1) | B. | {2,1} | C. | {(2,1)} | D. | {-1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3] | B. | (-∞,-1] | C. | [1,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{x}$,g(x)=($\sqrt{x}$)2 | |||||||||
B. | f(x)=2lgx,g(x)=lgx2 | |||||||||
C. | f(x)=$\sqrt{x-1}$$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$ | |||||||||
D. | f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{2,1<x<2}\\{3,x≥2}\end{array}\right.$,
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com