12.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=6,S7=35,則數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前100項(xiàng)和為$\frac{50}{51}$.

分析 利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a5=6,S7=35,
∴$\left\{\begin{array}{l}{{a}_{1}+4d=6}\\{7{a}_{1}+\frac{7×6}{2}d=35}\end{array}\right.$,解得a1=2,d=1,
∴an=2+(n-1)=n+1.
$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(n+1)(n+2)}$=$2(\frac{1}{n+1}-\frac{1}{n+2})$.
∴數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前100項(xiàng)和=2$[(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{101}-\frac{1}{102})]$
=2$(\frac{1}{2}-\frac{1}{102})$
=$\frac{50}{51}$.
故答案為:$\frac{50}{51}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知{an}為等差數(shù)列,a2+a6=10,則a4等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,已知AB=$\sqrt{2}$AC,∠B=30°,則∠A=( 。
A.45°B.15°C.45°或135°D.15°或105°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=log2|x|的圖象特點(diǎn)為( 。
A.關(guān)于x軸對(duì)稱B.關(guān)于y軸對(duì)稱C.關(guān)于原點(diǎn)對(duì)稱D.關(guān)于直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-3x-18<0},Z為整數(shù)集,則集合A∩Z中所有元素的和為( 。
A.12B.15C.18D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在西非肆虐的“埃博拉病毒”的傳播速度很快,這已經(jīng)成為全球性的威脅.為了考察某種埃博拉病毒疫苗的效果,現(xiàn)隨機(jī)抽取100只小鼠進(jìn)行試驗(yàn),得到如下列聯(lián)表:
感染未感染總計(jì)
服用104050
未服用203050
總計(jì)3070100
附表:
P(K2≥k)0.100.050.025
k2.763.8415.024
參照附表,下列結(jié)論正確的是( 。
A.在犯錯(cuò)誤的概率不超5%過的前提下,認(rèn)為“小動(dòng)物是否被感染與有沒有服用疫苗有關(guān)”
B.在犯錯(cuò)誤的概率不超5%過的前提下,認(rèn)為“小動(dòng)物是否被感染與有沒有服用疫苗無關(guān)”
C.有97.5%的把握認(rèn)為“小動(dòng)物是否被感染與有沒有服用疫苗有關(guān)”
D.有97.5%的把握認(rèn)為“小動(dòng)物是否被感染與有沒有服用疫苗無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|4-{x}^{2}|,x≤0}\\{{2}^{2-x},0<x≤2}\\{lo{g}_{2}x,x>2}\end{array}\right.$,
(1)畫出函數(shù)f(x)的圖象;
(2)求f(f(3))的值;
(3)求f(a2+1)(a∈R)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,△ABC為等邊三角形,側(cè)棱AA1⊥平面ABC,AB=2,AA1=2$\sqrt{3}$,D、E分別為AA1、BC1的中點(diǎn).
(1)求證:DE⊥平面BB1C1C;
(2)求BC與平面BC1D所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足(2cosA-1)sinB+2cosA=1.
(1)求A的大。
(2)若5b2=a2+2c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案