分析 (1)由等差數(shù)列的性質(zhì)可得2ccosA=acosC+b,結(jié)合余弦定理,化簡(jiǎn)即可得解.
(2)由等差數(shù)列的性質(zhì)可得2ccosA=acosC+b,利用正弦定理及三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得tanC=2tanA=1,利用正弦定理即可得解.
解答 解:(1)∵b,ccosA,acosC成等差數(shù)列,
∴2ccosA=acosC+b,
∴2c•$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=a•$\frac{^{2}+{a}^{2}-{c}^{2}}{2ab}$+b
∴3(c2-a2)=b2,可得:$\frac{{c}^{2}-{a}^{2}}{^{2}}$=$\frac{1}{3}$,
(2)∵b,ccosA,acosC成等差數(shù)列,
∴2ccosA=acosC+b,
⇒2sinCcosA=sinAcosC+sinB=sinAcosC+sin(A+C)
⇒2sinCcosA=sinAcosC+sinAcosC+cosAsinC
⇒sinCcosA=2sinAcosC
⇒tanC=2tanA=1,
$\begin{array}{l}又sinA=\frac{{\sqrt{5}}}{5},sinC=\frac{{\sqrt{2}}}{2},\\∴由\frac{a}{sinA}=\frac{c}{sinC}得a=\frac{csinA}{sinC}=\sqrt{2}.\end{array}$
注:第(2)問(wèn)可對(duì)角A用余弦定理再得三邊一等量關(guān)系,并聯(lián)立第(1)問(wèn)結(jié)果解關(guān)于a,b的方程組可解.
點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i>5? | B. | i>6? | C. | i≤5? | D. | i≤6? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | ±$\frac{2}{5}$ | D. | ±$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\sqrt{1+x}+\sqrt{1-x}$ | B. | f(x)=x3-1 | C. | f(x)=$\sqrt{1+x}-\sqrt{1-x}$ | D. | f(x)=-$\frac{1}{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com