【題目】已知橢圓,,過橢圓的右頂點(diǎn)和上頂點(diǎn)的直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)是橢圓的上頂點(diǎn), 過點(diǎn)分別作直線交橢圓于兩點(diǎn), 設(shè)這兩條直線的斜率分別為,且,證明: 直線 過定點(diǎn)
【答案】(1)(2)詳見解析
【解析】
試題分析:(1)根據(jù)兩點(diǎn)式可得直線的方程為,再根據(jù)切線與圓位置關(guān)系得,解得(2)直線過定點(diǎn)問題,一般通過解直線方程,根據(jù)直線方程特征求定點(diǎn):先考慮直線斜率存在的情形,,即將問題轉(zhuǎn)化為確定的關(guān)系,而,可利用點(diǎn)的坐標(biāo)進(jìn)行轉(zhuǎn)化即,再根據(jù)直線方程與橢圓方程聯(lián)立方程組,利用韋達(dá)定理代入化簡得,最后根據(jù)點(diǎn)斜式或方程恒成立理論求定點(diǎn),直線斜率不存在的情形可代入驗(yàn)證
試題解析:(1)直線過點(diǎn)和直線的方程為,直線與圓相切,, 解得橢圓的方程為.
(2)當(dāng)直線的斜率不存在時(shí), 設(shè),則,由得,
得.當(dāng)直線的斜率存在時(shí), 設(shè)的方程,,
,得
,
即,
由,即,
故直線過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.
(1)若直線與曲線交于兩點(diǎn),求的值;
(2)求曲線的內(nèi)接矩形的周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為1,弧是以點(diǎn)為圓心的圓弧.
(1)在正方形內(nèi)任取一點(diǎn),求事件“”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請(qǐng)據(jù)此估計(jì)圓周率的近似值(精確到).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為),其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).
(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本(元)表示為航行速度(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年五一節(jié)”期間,高速公路車輛“較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:
(1)求a的值,并說明交警部門采用的是什么抽樣方法?
(2)若該路段的車速達(dá)到或超過90km/h即視為超速行駛,求超速行駛的概率
(3)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的方程是,圓的參數(shù)方程是(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求直線與圓的極坐標(biāo)方程;
(2)射線:()與圓的交點(diǎn)為、兩點(diǎn),與直線交于點(diǎn),射線:與圓交于,兩點(diǎn),與直線交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人玩數(shù)字游戲,先由甲任想一個(gè)數(shù)字記為,再由乙猜甲剛才想的數(shù)字把乙想的數(shù)字記為,且, ,記.
(1)求的概率;
(2)若,則稱“甲乙心有靈犀”,求“甲乙心有靈犀”的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com