△ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊AB、AC的斜率的乘積是-
4
9
,求頂點(diǎn)A的軌跡方程.?
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)頂點(diǎn)C的坐標(biāo)為(x,y),由題意可得kAC•kBA=-
4
9
,代入點(diǎn)的坐標(biāo)整理即可得點(diǎn)C的軌跡方程.
解答: 解:設(shè)頂點(diǎn)A的坐標(biāo)為(x,y),由題意,知
y-6
x
y+6
x
=-
4
9

化簡(jiǎn)整理得:
x2
81
+
y2
36
=1
(x≠0),
當(dāng)x=0,點(diǎn)A和點(diǎn)C與點(diǎn)B重合,不合題意.    
故所求點(diǎn)A的軌跡方程為
x2
81
+
y2
36
=1
(x≠0).
點(diǎn)評(píng):本題考查圓錐曲線的軌跡問題,屬中檔題,求軌跡方程的常用方法有:直接法、代入法、定義法、參數(shù)法、交軌法等,熟練掌握各類方法及其適用題型是解決該類問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,在一周期內(nèi),當(dāng)x=
π
12
時(shí),y取得最大值3,當(dāng)x=
12
時(shí),y取得最小值-3,求:
(1)函數(shù)的解析式;
(2)求出函數(shù)f(x)的單調(diào)遞增區(qū)間與對(duì)稱軸方程,對(duì)稱中心坐標(biāo);
(3)當(dāng)x∈[-
π
12
π
6
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:(k+1)x+y+1=0:和l2:(k-3)x-ky-1=0,l1∥l2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0.-
π
2
<φ<
π
2
)的圖象與x軸交點(diǎn)為(-
π
6
,0),相鄰最高點(diǎn)坐標(biāo)為(
π
12
,1).
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)若y=g(x)的圖象與y=f(x)的圖象關(guān)于點(diǎn)(
π
12
,0)成中心對(duì)稱,求y=g(x)的解析式及單調(diào)增區(qū)間.
(3)求函數(shù)h(x)=log 
1
2
f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在定義域D內(nèi)的函數(shù)y=f(x),若對(duì)任意的x1、x2∈D,都有|f(x1)-f(x2)|<1,則稱函數(shù)y=f(x)為“Storm函數(shù)”.已知函數(shù)f(x)=x3-x+a(x∈[-1,1],a∈R).
(1)若a=2,求過點(diǎn)(1,2)處的切線方程;
(2)函數(shù)f(x)是否為“Storm函數(shù)”?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且
1
2
,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an2=(
1
2
 bn,設(shè)cn=
bn
an
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=2,a2=3,2an+1=3an-an-1(n≥2),
(Ⅰ)求證:數(shù)列{an+1-an}為等比數(shù)列;
(Ⅱ)求使不等式
an-m
an+1-m
2
3
成立的所有正整數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個(gè)命題:
①函數(shù)y=tan(
x
2
-
π
6
)的對(duì)稱中心是(2kπ+
π
3
,0)(k∈Z).
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z}.
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn).
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sin(x-
π
2
)在[0,π]上是減少的.
其中,正確命題的序號(hào)是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},B⊆A,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案