【題目】設(shè)f(x)=x3+x,x∈R,當(dāng)0≤θ≤π時(shí),f(mcosθ)+f(sinθ﹣2m)<0恒成立,則實(shí)數(shù)m的取值范圍是

【答案】( ,+∞)
【解析】解:∵f(x)=x3+x,∴f(x)在R上遞增且為奇函數(shù),
∴當(dāng)0≤θ≤π時(shí),f(mcosθ)+f(sinθ﹣2m)<0等價(jià)為:
當(dāng)0≤θ≤π時(shí),f(mcosθ)<﹣f(sinθ﹣2m)=f(2m﹣sinθ),
即mcosθ<2m﹣sinθ,
即m(2﹣cosθ)>sinθ
∵0≤θ≤π,∴2﹣cosθ>0,
則不等式等價(jià)為m>
設(shè)g(θ)= ,則g′(θ)= = ,
∵0≤θ≤π,
∴由g′(θ)=0得cosθ= ,即θ=
由g′(θ)>0得cosθ> ,即0<θ<
由g′(θ)<0得cosθ< ,即 <θ<π,
即當(dāng)θ= 時(shí),g(θ)取得極大值g( )= = = ,
則m>
所以答案是:( ,+∞)
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex1+x﹣2(e為自然對(duì)數(shù)的底數(shù)).g(x)=x2﹣ax﹣a+3.若存在實(shí)數(shù)x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若a2=b2+bc,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)a=1時(shí),求曲線數(shù)在點(diǎn)(1, )處的切線方程;

(2)時(shí),函數(shù)數(shù)的最小值為0,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且處取得極小值.設(shè)

(1)若曲線上的點(diǎn)到點(diǎn)的距離的最小值為,求的值;

(2)如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的菱形,且,側(cè)面為等邊三角形,且與底面垂直, 的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

求函數(shù)的單調(diào)區(qū)間;

當(dāng)時(shí),討論函數(shù)圖像的交點(diǎn)個(gè)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)樣本M的數(shù)據(jù)是x1 , x2 , …,xn , 它的平均數(shù)是5,另一個(gè)樣本N的數(shù)據(jù)x12 , x22 , …,xn2它的平均數(shù)是34.那么下面的結(jié)果一定正確的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,某拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓心,經(jīng)過(guò)點(diǎn)的直線交圓, 兩點(diǎn),交此拋物線于 兩點(diǎn),其中, 在第一象限, , 在第二象限.

(1)求該拋物線的方程;

(2)是否存在直線,使的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案