某城市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中度重污染重度污染
天數(shù)413183091115
(1)若某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失S(單位:元)與空氣質(zhì)量指數(shù)API(記為ω)的關(guān)系式為:
S=
0,0≤ω≤100
4ω-400,100<ω≤300
2000,ω>300
,試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過(guò)600元的概率;
(2)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

非重度污染重度污染合計(jì)
供暖季
 
 
 
非供暖季
 
 
 
合計(jì)
 
 
100
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)由200<S≤600,得150<ω≤250,頻數(shù)為39,即可求出概率;
(2)根據(jù)所給的數(shù)據(jù),列出列聯(lián)表,根據(jù)所給的觀測(cè)值的公式,代入數(shù)據(jù)做出觀測(cè)值,同臨界值進(jìn)行比較,即可得出結(jié)論.
解答: 解:(1)設(shè)“在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于200元且不超過(guò)600元”為事件A…(1分)
由200<S≤600,得150<ω≤250,頻數(shù)為39,…(3分)
∴P(A)=
39
100
….(4分)
(2)根據(jù)以上數(shù)據(jù)得到如表:
非重度污染 重度污染 合計(jì)
供暖季 22 8 30
非供暖季 63 7 70
合計(jì) 85 15 100
….(8分)
K2的觀測(cè)值K2=
100×(63×8-22×7)2
85×15×30×70
≈4.575>3.841….(10分)
所以有95%的把握認(rèn)為空氣重度污染與供暖有關(guān).….(12分)
點(diǎn)評(píng):本題考查概率知識(shí),考查列聯(lián)表,觀測(cè)值的求法,是一個(gè)獨(dú)立性檢驗(yàn),我們可以利用臨界值的大小來(lái)決定是否拒絕原來(lái)的統(tǒng)計(jì)假設(shè),若值較大就拒絕假設(shè),即拒絕兩個(gè)事件無(wú)關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=
1
2
(5
1
n
-5-
1
n
),n∈N*,求(x+
1+x2
)n的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cosx,sinx)
,
n
=(cosx,cosx)
,且當(dāng)x∈[0,π]時(shí),f(x)=
m
n
,求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程2kx2-2x-3k-2=0有兩根x1,x2,且x1,x2都小于0,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為考查某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下丟失數(shù)據(jù)的列聯(lián)表:
藥物效果試驗(yàn)列聯(lián)表
患病 未患病 總計(jì)
沒(méi)服用藥 20 30 50
服用藥 x y 50
總計(jì) M N 100
設(shè)從沒(méi)服用藥的動(dòng)物中任取兩只,未患病數(shù)為X;從服用藥物的動(dòng)物中任取兩只,未患病數(shù)為Y,工作人員曾計(jì)算過(guò)P(X=0)=
38
9
 P(Y=0).
(1)求出列聯(lián)表中數(shù)據(jù)x,y,M,N的值;
(2)能夠有多大的把握認(rèn)為藥物有效?
(3)現(xiàn)在從該100頭動(dòng)物中,采用隨機(jī)抽樣方法每次抽取1頭,抽后返回,抽取5次,若每次抽取的結(jié)果是相互獨(dú)立的,記被抽取的5頭中為服了藥還患病的數(shù)量為ξ.,求ξ的期望E(ξ)和方差D(ξ).
參考公式:x2=
n(ad-bc)2
(a+b)(b+c)(a+c)(b+d)
(其中n=a+b+c+d)
P(K2≥k) 0.25 0.15 0.10 0.05 0.010 0.005
k 1.323 2.072 2.706 3.845 6.635 7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg(x-1)的反函數(shù)是f-1(x),則f-1(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x+3,x>4
f(x+2) ,x≤4
,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
,
b
,
e
滿足|
e
|=1,
a
e
=1,
b
e
=2,|
a
-
b
|=2,則
a
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若命題“?x∈[1,2],x2<a”為假命題,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案