【題目】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再將所得函數(shù)圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來的,得到函數(shù)的圖象.已知函數(shù)的部分圖象如圖所示,則函數(shù)( )

A.最小正周期為,最大值為2

B.最小正周期為,圖象關(guān)于點(diǎn)中心對(duì)稱

C.最小正周期為,圖象關(guān)于直線對(duì)稱

D.最小正周期為,在區(qū)間單調(diào)遞減

【答案】D

【解析】

先根據(jù)函數(shù)的圖像求出,再求出.利用函數(shù)的最小正周期否定選項(xiàng)A,C,再求函數(shù)f(x)的對(duì)稱中心否定選項(xiàng)B,再求函數(shù)f(x)的單調(diào)區(qū)間確定選項(xiàng)D是真命題.

由圖可知,,,∴.

又由可得,,而,∴.

,∴.

的最小正周期為,選項(xiàng)A,C錯(cuò)誤.

對(duì)于選項(xiàng)B,令=kπ(k∈z),所以x=-,所以函數(shù)f(x)的對(duì)稱中心為(-)(k∈z),所以選項(xiàng)B是錯(cuò)誤的;

又當(dāng)時(shí),,所以是減函數(shù),所以選項(xiàng)D正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為.

(I)求曲線在點(diǎn)處的切線方程;

(II)求函數(shù)的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)Q在橢圓上,則橢圓的離心率為______;若過且斜率為的直線與橢圓相交于AB兩點(diǎn),且,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,側(cè)棱⊥底面的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對(duì)任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為更好地落實(shí)農(nóng)民工工資保證金制度,南方某市勞動(dòng)保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)滿足的非空集合、,有下列四個(gè)命題:

①“若任取,則”是必然事件; ②“若,則”是不可能事件;

③“若任取,則”是隨機(jī)事件; ④“若,則”是必然事件.

其中正確命題的個(gè)數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點(diǎn),且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案