)如圖所示,在四棱錐PABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點(diǎn),當(dāng)點(diǎn)M滿足 時(shí),平面MBD⊥平面PCD.(只要填寫一個(gè)你認(rèn)為是正確的條件即可)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知一幾何體的三視圖如圖所示,正視圖和側(cè)視圖都是矩形,俯視圖為正方形,在該幾何體上任意選擇4個(gè)頂點(diǎn),以這4個(gè)點(diǎn)為頂點(diǎn)的幾何體(圖形)可能是( )
①矩形;②有三個(gè)面為直角三角形,有一個(gè)面為等腰三角形的四面體;③每個(gè)面都是直角三角形的四面體.
(A)①②③ (B)②③ (C)①③ (D)①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示 ,在四面體ABCD中,E、G分別為BC、AB的中點(diǎn),F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求證:EF、GH、BD交于一點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,幾何體EABCD是四棱錐,△ABD為正三角形,CB=CD,EC⊥BD.
(1)求證:BE=DE;
(2)若∠BCD=120°,M為線段AE的中點(diǎn),求證:DM∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐ABCD,則在三棱錐ABCD中,下列結(jié)論正確的是( )
(A)平面ABD⊥平面ABC (B)平面ADC⊥平面BDC
(C)平面ABC⊥平面BDC (D)平面ADC⊥平面ABC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐PABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC上的點(diǎn).
(1)證明:BD⊥平面APC;
(2)若G為PC的中點(diǎn),求DG與平面APC所成的角的正切值;
(3)若G滿足PC⊥平面BGD,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
正方體ABCDA1B1C1D1的棱長為a,點(diǎn)M在AC1上且=,N為B1B的中點(diǎn),則||為( )
(A)a (B)a (C)a (D)a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在四棱錐PABCD中,底面ABCD是正方形,側(cè)棱PD⊥平面ABCD,AB=PD=a.點(diǎn)E為側(cè)棱PC的中點(diǎn),又作DF⊥PB交PB于點(diǎn)F.則PB與平面EFD所成角為( )
(A)30° (B)45° (C)60° (D)90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)a,b,c均為正實(shí)數(shù),則三個(gè)數(shù)a+,b+,c+( )
A.都大于2
B.都小于2
C.至少有一個(gè)不大于2
D.至少有一個(gè)不小于2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com