精英家教網 > 高中數學 > 題目詳情

【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了人口規(guī)模相當的個城市采用不同的定價方案作為試點,經過一個月的統(tǒng)計,發(fā)現該流量包的定價: (單位:元/月)和購買總人數(單位:萬人)的關系如表:

定價x(元/月)

20

30

50

60

年輕人(40歲以下)

10

15

7

8

中老年人(40歲以及40歲以上)

20

15

3

2

購買總人數y(萬人)

30

30

10

10

(Ⅰ)根據表中的數據,請用線性回歸模型擬合的關系,求出關于的回歸方程;并估計元/月的流量包將有多少人購買?

(Ⅱ)若把元/月以下(不包括元)的流量包稱為低價流量包,元以上(包括元)的流量包稱為高價流量包,試運用獨立性檢驗知識,填寫下面列聯,并通過計算說明是否能在犯錯誤的概率不超過的前提下,認為購買人的年齡大小與流量包價格高低有關?

定價x(元/月)

小于50元

大于或等于50元

總計

年輕人(40歲以下)

中老年人(40歲以及40歲以上)

總計

參考公式:其中

其中

參考數據:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)38萬人(Ⅱ)見解析

【解析】

(Ⅰ)利用所給公式與參考數值即可求解回歸方程,令 代入即可求出此時y的估計值;

(Ⅱ)根據流量包的定價和購買總人數的關系表中的數值填寫列聯表,代入

,比較它與6.635的大小即可。

(Ⅰ) ,

所以:關于的回歸方程是:

估計10元/月的流量包將有38萬人購買;

(Ⅱ)

定價x(元/月)

小于50元

大于或等于50元

總計

年輕人(40歲以下)

25

15

40

中老年人(40歲以及40歲以上)

35

5

40

總 計

60

20

80

所以能在犯錯誤的概率不超過0.01的前提下,認為購買人的年齡大小與流量包價格高低有關。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知實數x,y滿足條件,則點的運動軌跡是( )

A.橢圓B.雙曲線C.拋物線D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為鼓勵家;,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到位教師近年每人手機月平均使用流量(單位:)的數據,其頻率分布直方圖如下:

若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.

(Ⅰ) 從該校教師中隨機抽取人,求這人中至多有人月使用流量不超過 的概率;

(Ⅱ) 現該通訊商推出三款流量套餐,詳情如下:

套餐名稱

月套餐費(單位:元)

月套餐流量(單位:)

這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值 流量,資費元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值 流量,資費元/次,依次類推,如果當月流量有剩余,系統(tǒng)將自動清零,無法轉入次月使用.

學校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔系統(tǒng)自動充值的流量資費的,其余部分由教師個人承擔,問學校訂購哪一款套餐最經濟?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象過點,且在點處的切線與直線平行.

1)求實數,的值;

2)若對任意的,函數在區(qū)間上總不是單調函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點分別為,點為坐標原點).

(1)求拋物線的方程;

(2)過點的直線交的下半部分于點,交的左半部分于點,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的數表為森德拉姆篩(森德拉姆,東印度學者),其特點是每行每列都成等差數列.在此表中,數字“121”出現的次數為___________.

2

3

4

5

6

7

……

3

5

7

9

11

13

……

4

7

10

13

16

19

……

5

9

13

17

21

25

……

6

11

16

21

26

31

……

7

13

19

25

31

37

……

……

……

……

……

……

……

……

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列四個命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側面都是矩形的四棱柱是正四棱柱

C. 過空間任一點與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點的大圓有且只有一個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

1)討論函數的單調性;

2)當時,

①求函數上的最大值和最小值;

②若存在,,…,,使得成立,求的最大值.

查看答案和解析>>

同步練習冊答案